N-Glyco-Engineering in Plants: Update on Strategies and Major Achievements

  • Herta Steinkellner
  • Alexandra Castilho
Part of the Methods in Molecular Biology book series (MIMB, volume 1321)


Plants are being developed as a cost-effective production system for biopharmaceuticals in large quantities. Although plants properly fold and assemble complex proteins from human origin, one issue that needs to be addressed is their glycan structure. In the past years we have been witnessing outstanding results in targeted manipulation of the plant N-glycosylation pathway allowing recombinant proteins to be produced with human-type oligosaccharides at large homogeneity. This opens new possibility in manufacturing next-generation biopharmaceuticals.

This review presents a variety of technologies and strategies that are being employed to engineer the plant N-glycosylation, thus pointing to the enormous potential of plants being used as a novel production system with unique features and possibilities.

Key words

Glyco-engineering Plants Recombinant protein expression Glycosyltransferases Glycosidases Subcellular targeting 



Drosophila melanogaster Core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1


Human CMP-N-acetylneuraminic acid synthase


Mouse CMP-sialic acid transporter


Cytoplasmic tail, transmembrane domain, and stem


A. thaliana α1,3-fucosyltransferase


Human α1,6-fucosyltransferase


Human α1,3-fucosyltransferase IXa


Human polypeptide N-acetylgalactosaminyltransferase


Human β1,4-galactosyltransferase


Pseudomonas aeruginosa or Yersinia enterocolitica GMI, Golgi mannosidase I


Golgi mannosidase II


Mouse UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine-kinase


α1,3-Mannosyl-β1,2-N-acetylglucosaminyltransferase I


α1,6-Mannosyl-β1,2-N-acetylglucosaminyltransferase II


Human β1,4-mannosyl-β1,4-N-acetylglucosaminyltransferase III


Human α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase IVa


Human α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase V


Arabidopsis β-N-acetylhexosaminidases 1 and 3


Human N-acetylneuraminic acid phosphate-synthase




Rat or human α2,6-sialyltransferase


Human α2,3-sialyltransferase


Mouse α2,6-sialyltransferase

UDP-GlcNAc/UDP-GalNAc transporter

UPD-GlcNAc 4-epimerase


Caenorhabditis elegans








  1. 1.
    Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181PubMedCrossRefGoogle Scholar
  2. 2.
    Sussman MR, Amasino RM, Young JC et al (2000) The Arabidopsis knockout facility at the University of Wisconsin-Madison. Plant Physiol 124:1465–1467PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Strasser R, Altmann F, Mach L et al (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett 561:132–136PubMedCrossRefGoogle Scholar
  4. 4.
    Koprivova A, Stemmer C, Altmann F et al (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2:517–523PubMedCrossRefGoogle Scholar
  5. 5.
    Huether CM, Lienhart O, Baur A et al (2005) Glyco-engineering of moss lacking plant-specific sugar residues. Plant Biol (Stuttg) 7:292–299CrossRefGoogle Scholar
  6. 6.
    Cox KM, Sterling JD, Regan JT et al (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597PubMedCrossRefGoogle Scholar
  7. 7.
    Strasser R, Stadlmann J, Schähs M et al (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402PubMedCrossRefGoogle Scholar
  8. 8.
    Sourrouille C, Marquet-Blouin E, D'Aoust MA et al (2008) Down-regulated expression of plant-specific glycoepitopes in alfalfa. Plant Biotechnol J 6:702–721PubMedCrossRefGoogle Scholar
  9. 9.
    Shin YJ, Chong YJ, Yang MS et al (2011) Production of recombinant human granulocyte macrophage-colony stimulating factor in rice cell suspension culture with a human-like N-glycan structure. Plant Biotechnol J 9:1109–1119PubMedCrossRefGoogle Scholar
  10. 10.
    Betenbaugh MJ, Tomiya N, Narang S et al (2004) Biosynthesis of human-type N-glycans in heterologous systems. Curr Opin Struct Biol 14:601–606PubMedCrossRefGoogle Scholar
  11. 11.
    Gomord V, Fitchette AC, Menu-Bouaouiche L et al (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587PubMedCrossRefGoogle Scholar
  12. 12.
    Liebminger E, Veit C, Pabst M et al (2011) Beta-N-acetylhexosaminidases HEXO1 and HEXO3 are responsible for the formation of paucimannosidic N-glycans in Arabidopsis thaliana. J Biol Chem 286:10793–10802PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Fitchette-Laine AC, Gomord V, Cabanes M et al (1997) N-glycans harboring the Lewis a epitope are expressed at the surface of plant cells. Plant J 12:1411–1417PubMedCrossRefGoogle Scholar
  14. 14.
    Strasser R, Bondili JS, Vavra U et al (2007) A unique beta1,3-galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in Arabidopsis thaliana. Plant Cell 19:2278–2292PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Weise A, Altmann F, Rodriguez-Franco M et al (2007) High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Delta-fuc-t Delta-xyl-t mutant. Plant Biotechnol J 5:389–401PubMedCrossRefGoogle Scholar
  16. 16.
    Castilho A, Gattinger P, Grass J et al (2011) N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21:813–823PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Parsons J, Altmann F, Arrenberg CK et al (2012) Moss-based production of asialo-erythropoietin devoid of Lewis A and other plant-typical carbohydrate determinants. Plant Biotechnol J 10:851–861PubMedCrossRefGoogle Scholar
  18. 18.
    Mori K, Iida S, Yamane-Ohnuki N et al (2007) Non-fucosylated therapeutic antibodies, the next generation of therapeutic antibodies. Cytotechnology 55:109–114PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Yamane-Ohnuki N, Satoh M (2009) Production of therapeutic antibodies with controlled fucosylation. MAbs 1:230–236PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Forthal DN, Gach JS, Landucci G et al (2010) Fc-glycosylation influences Fcγ receptor binding and cell-mediated anti-HIV activity of monoclonal antibody 2G12. J Immunol 185:6876–6882PubMedCrossRefGoogle Scholar
  21. 21.
    Castilho A, Bohorova N, Grass J et al (2011) Rapid high yield production of different glycoforms of Ebola virus monoclonal antibody. PLoS One 6, e26040PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Rouwendal GJ, Florack DE, Hesselink T et al (2009) Synthesis of Lewis X epitopes on plant N-glycans. Carbohydr Res 344:1487–1493PubMedCrossRefGoogle Scholar
  23. 23.
    Wang J, Zhang Y, Wei J et al (2007) Lewis X oligosaccharides targeting to DC-SIGN enhanced antigen-specific immune response. Immunology 121:174–182PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Gleeson PA, Schachter H (1983) Control of glycoprotein synthesis. J Biol Chem 258:6162–6173PubMedGoogle Scholar
  25. 25.
    Schachter H (1986) Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol 64:163–181PubMedCrossRefGoogle Scholar
  26. 26.
    Rouwendal GJ, Wuhrer M, Florack DE et al (2007) Efficient introduction of a bisecting GlcNAc residue in tobacco N-glycans by expression of the gene encoding human N-acetylglucosaminyltransferase III. Glycobiology 17:334–344PubMedCrossRefGoogle Scholar
  27. 27.
    Frey AD, Karg SR, Kallio PT (2009) Expression of rat beta(1,4)-N-acetylglucosaminyltransferase III in Nicotiana tabacum remodels the plant-specific N-glycosylation. Plant Biotechnol J 7:33–48PubMedCrossRefGoogle Scholar
  28. 28.
    Karg SR, Frey AD, Kallio PT (2010) Reduction of N-linked xylose and fucose by expression of rat beta1,4-N-acetylglucosaminyltransferase III in tobacco BY-2 cells depends on Golgi enzyme localization domain and genetic elements used for expression. J Biotechnol 146:54–65PubMedCrossRefGoogle Scholar
  29. 29.
    Nagels B, Van Damme EJ, Callewaert N et al (2012) Introduction of tri-antennary N-glycans in Arabidopsis thaliana plants. Plant Sci 185–186:161–168PubMedCrossRefGoogle Scholar
  30. 30.
    Nagels B, Van Damme EJ, Pabst M et al (2011) Production of complex multiantennary N-glycans in Nicotiana benthamiana plants. Plant Physiol 155:1103–1112PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Palacpac NQ, Yoshida S, Sakai H et al (1999) Stable expression of human beta1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc Natl Acad Sci U S A 96:4692–4697PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Fujiyama K, Palacpac NQ, Sakai H et al (2001) In vivo conversion of a glycan to human compatible type by transformed tobacco cells. Biochem Biophys Res Commun 289:553–557PubMedCrossRefGoogle Scholar
  33. 33.
    Misaki R, Kimura Y, Palacpac NQ et al (2003) Plant cultured cells expressing human Î21,4-galactosyltransferase secrete glycoproteins with galactose-extended N-linked glycans. Glycobiology 13:199–205PubMedCrossRefGoogle Scholar
  34. 34.
    Bakker H, Bardor M, Molthoff JW et al (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci U S A 98:2899–2904PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Bakker H, Rouwendal GJ, Karnoup AS et al (2006) An antibody produced in tobacco expressing a hybrid beta-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci U S A 103:7577–7582PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Vézina LP, Faye L, Lerouge P et al (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7:442–455PubMedCrossRefGoogle Scholar
  37. 37.
    Strasser R, Castilho A, Stadlmann J et al (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17:485–499PubMedCrossRefGoogle Scholar
  39. 39.
    Erbayraktar S, Grasso G, Sfacteria A et al (2003) Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci U S A 100:6741–6746PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Varki A (2007) Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446:1023–1029PubMedCrossRefGoogle Scholar
  41. 41.
    Takashima S, Abe T, Yoshida S et al (2006) Analysis of sialyltransferase-like proteins from Oryza sativa. J Biochem 139:279–287PubMedCrossRefGoogle Scholar
  42. 42.
    Takashima S, Seino J, Nakano T et al (2009) Analysis of CMP-sialic acid transporter-like proteins in plants. Phytochemistry 70:1973–1981PubMedCrossRefGoogle Scholar
  43. 43.
    Shah MM, Fujiyama K, Flynn CR et al (2003) Sialylated endogenous glycoconjugates in plant cells. Nat Biotechnol 21:1470–1471PubMedCrossRefGoogle Scholar
  44. 44.
    Bakker H, Routier F, Ashikov A et al (2008) A CMP-sialic acid transporter cloned from Arabidopsis thaliana. Carbohydr Res 343:2148–2152PubMedCrossRefGoogle Scholar
  45. 45.
    Zeleny R, Kolarich D, Strasser R et al (2006) Sialic acid concentrations in plants are in the range of inadvertent contamination. Planta 224:222–227PubMedCrossRefGoogle Scholar
  46. 46.
    Wee EG, Sherrier DJ, Prime TA et al (1998) Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10:1759–1768PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Misaki R, Fujiyama K, Seki T (2006) Expression of human CMP-N-acetylneuraminic acid synthetase and CMP-sialic acid transporter in tobacco suspension-cultured cell. Biochem Biophys Res Commun 339:1184–1189PubMedCrossRefGoogle Scholar
  48. 48.
    Kajiura H, Misaki R, Fujiyama K et al (2011) Stable coexpression of two human sialylation enzymes in plant suspension-cultured tobacco cells. J Biosci Bioeng 111:471–477PubMedCrossRefGoogle Scholar
  49. 49.
    Paccalet T, Bardor M, Rihouey C et al (2007) Engineering of a sialic acid synthesis pathway in transgenic plants by expression of bacterial Neu5Ac-synthesizing enzymes. Plant Biotechnol J 5:16–25PubMedCrossRefGoogle Scholar
  50. 50.
    Castilho A, Pabst M, Leonard R et al (2008) Construction of a functional CMP-sialic acid biosynthesis pathway in Arabidopsis. Plant Physiol 147:331–339PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Castilho A, Strasser R, Stadlmann J et al (2010) In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 285:15923–15930PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Jez J, Castilho A, Grass J et al (2013) Expression of functionally active sialylated human erythropoietin in plants. Biotechnol J 8:371–382PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Castilho A, Neumann L, Gattinger P et al (2013) Generation of biologically active multi-sialylated recombinant human EPOFc in plants. PLoS One 8, e54836PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Schneider JD, Castilho A, Neumann L et al (2013) Expression of human butyrylcholinesterase with an engineered glycosylation profile resembling the plasma-derived orthologue. Biotechnol J 9:501–510PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Parsons J, Altmann F, Graf M et al (2013) A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin. Sci Rep 3:3019PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Strasser R (2013) Engineering of human-type O-glycosylation in Nicotiana benthamiana plants. Bioengineered 4:191–196PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Yang Z, Drew DP, Jorgensen B et al (2012) Engineering mammalian mucin-type O-glycosylation in plants. J Biol Chem 287:11911–11923PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Daskalova SM, Radder JE et al (2010) Engineering of N benthamiana L plants for production of N-acetylgalactosamine-glycosylated proteins-towards development of a plant-based platform for production of protein therapeutics with mucin type O-glycosylation. BMC Biotechnol 10:62PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Yang Z, Bennett EP, Jorgensen B et al (2012) Toward stable genetic engineering of human O-glycosylation in plants. Plant Physiol 160:450–463PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Castilho A, Neumann L, Daskalova S et al (2012) Engineering of sialylated mucin-type O-glycosylation in plants. J Biol Chem 287:36518–36526PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Chung SM, Frankman EL, Tzfira T (2005) A versatile vector system for multiple gene expression in plants. Trends Plant Sci 10:357–361PubMedCrossRefGoogle Scholar
  62. 62.
    Dafny-Yelin M, Tzfira T (2007) Delivery of multiple transgenes to plant cells. Plant Physiol 145:1118–1128PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Weber E, Engler C, Gruetzner R et al (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6, e16765PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Werner S, Engler C, Weber E et al (2012) Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs 3:38–43PubMedGoogle Scholar
  65. 65.
    Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J et al (2013) GoldenBraid 2.0, a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162:1618–1631PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Peremarti A, Twyman RM, Gómez-Galera S et al (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Herta Steinkellner
    • 1
  • Alexandra Castilho
    • 1
  1. 1.Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria

Personalised recommendations