Skip to main content

In Situ Detection of Neuron-Specific MicroRNAs in Frozen Brain Tissue

  • Protocol
Epigenetic Methods in Neuroscience Research

Part of the book series: Neuromethods ((NM,volume 105))

  • 1192 Accesses

Abstract

MicroRNAs (miRNAs) are 22–24 nucleotide long small RNA molecules, which regulate the expression of protein coding genes by binding to their 3′-untranslated region and causing inhibition of protein synthesis either by degradation of the target mRNA or by repression of translation. The vast majority of microRNAs are found in the brain, yet their functions are still to be investigated. Therefore, being able to analyze the spatial and the temporal expression of the miRNAs at the tissue and cellular levels in the brain is of greatest interest. Due to small size of miRNAs and low expression levels, it has been a challenge to detect miRNAs in situ. Here, we describe a fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes and the tyramide signal amplification (TSA) system for detection of microRNAs in frozen brain tissue sections. Combining this miRNA-FISH method with immunofluorescence using neuron-specific antibodies allows cell type-specific localization of miRNAs in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  2. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  3. Kloosterman WP, Plasterk RHA (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11(4):441–450

    Article  CAS  PubMed  Google Scholar 

  4. Wienholds E, Plasterk RHA (2005) MicroRNA function in animal development. FEBS Lett 579(26):5911–5922

    Article  CAS  PubMed  Google Scholar 

  5. Krützfeldt J, Stoffel M (2006) MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 4(1):9–12

    Article  PubMed  Google Scholar 

  6. Hwang H-W, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94(6):776–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Schickel R, Boyerinas B, Park S-M, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27(45):5959–5974

    Article  CAS  PubMed  Google Scholar 

  8. Heneghan HM, Miller N, Kerin M (2010) Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 11:354–361

    Article  CAS  PubMed  Google Scholar 

  9. Czech MP (2006) MicroRNAs as therapeutic targets in cancer. N Engl J Med 354(11):1194–1195

    Article  CAS  PubMed  Google Scholar 

  10. McDermott AM, Heneghan HM, Miller N, Kerin MJ (2011) The therapeutic otential of microRNAs: disease modulators and drug targets. Pharm Res 28(12):3016–3029

    Article  CAS  PubMed  Google Scholar 

  11. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) MiRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hohjoh H, Fukushima T (2007) Expression profile analysis of microRNA (miRNA) in mouse central nervous system using a new miRNA detection system that examines hybridization signals at every step of washing. Gene 391(1–2):39–44

    Article  CAS  PubMed  Google Scholar 

  14. Bak M, Silahtaroglu A, Møller M, Christensen M, Rath MF, Skryabin B et al (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14(3):432–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Olsen L, Klausen M, Helboe L, Nielsen FC, Werge T (2009) MicroRNAs show mutually exclusive expression patterns in the brain of adult male rats. PLoS One 4(10):e7225

    Article  PubMed Central  PubMed  Google Scholar 

  16. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E et al (2005) MicroRNA expression in zebrafish embryonic development. Science 309(5732):310–311

    Article  CAS  PubMed  Google Scholar 

  17. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13

    Article  PubMed Central  PubMed  Google Scholar 

  18. Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RHA, Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12(2):187–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Krichevsky AM, Sonntag K-C, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Visvanathan J, Lee S, Lee B, Lee JW, Lee S-K (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7):744–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. De Pietri TD, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135(23):3911–3921

    Article  Google Scholar 

  23. Meza-Sosa KF, Valle-Garcia D, Pedraza-Alva G, Perez-Martinez L (2012) Role of microRNAs in central nervous system development and pathology. J Neurosci Res 90(1):1–12

    Article  CAS  PubMed  Google Scholar 

  24. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308(5723):833–838

    Article  CAS  PubMed  Google Scholar 

  25. Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R et al (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204(7):1553–1558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9(6):328–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Mouillet-Richard S, Baudry A, Launay JM, Kellermann O (2012) MicroRNAs and depression. Neurobiol Dis 46(2):272–278

    Article  CAS  PubMed  Google Scholar 

  28. Salta E, De Strooper B (2012) Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 11(2):189–200

    Article  CAS  PubMed  Google Scholar 

  29. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113(1):25–36

    Article  CAS  PubMed  Google Scholar 

  30. Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A et al (2004) MicroRNA-responsive “sensor” transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36(10):1079–1083

    Article  CAS  PubMed  Google Scholar 

  31. Koshkin A (1998) LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54(14):3607–3630

    Article  CAS  Google Scholar 

  32. Silahtaroglu AN, Nolting D, Dyrskjøt L, Berezikov E, Møller M, Tommerup N et al (2007) Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc 2(10):2520–2528

    Article  CAS  PubMed  Google Scholar 

  33. Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125(1–2):279–285

    Article  CAS  PubMed  Google Scholar 

  34. Kerstens HM, Poddighe PJ, Hanselaar AG (1995) A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine. J Histochem Cytochem 43(4):347–352

    Article  CAS  PubMed  Google Scholar 

  35. Ason B, Darnell DK, Wittbrodt B, Berezikov E, Kloosterman WP, Wittbrodt J et al (2006) Differences in vertebrate microRNA expression. Proc Natl Acad Sci U S A 103(39):14385–14389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Darnell DK, Kaur S, Stanislaw S, Konieczka JH, Konieczka JK, Yatskievych TA et al (2006) MicroRNA expression during chick embryo development. Dev Dyn 235(11):3156–3165

    Article  CAS  PubMed  Google Scholar 

  37. Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RHA (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3(1):27–29

    Article  CAS  PubMed  Google Scholar 

  38. Goossens K, De Spiegelaere W, Stevens M, Burvenich C, De Spiegeleer B, Cornillie P et al (2012) Differential microRNA expression analysis in blastocysts by whole mount in situ hybridization and reverse transcription quantitative polymerase chain reaction on laser capture microdissection samples. Anal Biochem 423(1):93–101

    Article  CAS  PubMed  Google Scholar 

  39. Nuovo GJ (2010) In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the co-localization of their putative target. Methods 52(4):307–315

    Article  CAS  PubMed  Google Scholar 

  40. Schneider M, Andersen DC, Silahtaroglu A, Lyngbæk S, Kauppinen S, Hansen JL et al (2011) Cell-specific detection of microRNA expression during cardiomyogenesis by combined in situ hybridization and immunohistochemistry. J Mol Histol 42(4):289–299

    Article  CAS  PubMed  Google Scholar 

  41. Herzer S, Silahtaroglu A, Meister B (2012) Locked nucleic acid-based in situ hybridisation reveals miR-7a as a hypothalamus-enriched microRNA with a distinct expression pattern. J Neuroendocrinol 24(12):1492–1504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Swedish Research Council, Funds from Karolinska Institutet, Åhlén-stiftelsen, and The Lundbeck Foundation. We thank Mattias Karlén for help with the schematic drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asli Silahtaroglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Silahtaroglu, A., Herzer, S., Meister, B. (2016). In Situ Detection of Neuron-Specific MicroRNAs in Frozen Brain Tissue. In: Karpova, N. (eds) Epigenetic Methods in Neuroscience Research. Neuromethods, vol 105. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2754-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2754-8_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2753-1

  • Online ISBN: 978-1-4939-2754-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics