Skip to main content

T Cell Receptor Engineering and Analysis Using the Yeast Display Platform

  • Protocol
Yeast Surface Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1319))

Abstract

The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g., a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g., T cell activation by as few as 1–3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with K D values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis MM, Boniface JJ, Reich Z et al (1998) Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol 16:523–544

    Article  CAS  PubMed  Google Scholar 

  2. Davis MM, Krogsgaard M, Huppa JB et al (2003) Dynamics of cell surface molecules during T cell recognition. Annu Rev Biochem 72:717–742

    Article  CAS  PubMed  Google Scholar 

  3. van der Merwe PA, Davis SJ (2003) Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 21:659–684

    Article  PubMed  Google Scholar 

  4. Davis MM, Krogsgaard M, Huse M et al (2007) T cells as a self-referential, sensory organ. Annu Rev Immunol 25:681–695. doi:10.1146/annurev.immunol.24.021605.090600

    Article  CAS  PubMed  Google Scholar 

  5. Garcia KC, Teyton L, Wilson IA (1999) Structural basis of T cell recognition. Annu Rev Immunol 17:369–397

    Article  CAS  PubMed  Google Scholar 

  6. Marrack P, Scott-Browne JP, Dai S et al (2008) Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu Rev Immunol 26:171–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Van Laethem F, Tikhonova AN, Pobezinsky LA et al (2013) Lck availability during thymic selection determines the recognition specificity of the T cell repertoire. Cell 154:1326–1341. doi:10.1016/j.cell.2013.08.009, S0092-8674(13)01003-9 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  8. Li Y, Yin Y, Mariuzza RA (2013) Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol 4:206. doi:10.3389/fimmu.2013.00206

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Garcia KC, Adams JJ, Feng D et al (2009) The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat Immunol 10:143–147. doi:10.1038/ni.f.219, ni.f.219 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kranz DM (2009) Two mechanisms that account for major histocompatibility complex restriction of T cells. F1000 Biol Rep 1:55–58

    Article  PubMed Central  PubMed  Google Scholar 

  11. Holler PD, Holman PO, Shusta EV et al (2000) In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc Natl Acad Sci U S A 97:5387–5392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Holler PD, Chlewicki LK, Kranz DM (2003) TCRs with high affinity for foreign pMHC show self-reactivity. Nat Immunol 4:55–62

    Article  CAS  PubMed  Google Scholar 

  13. Weber KS, Donermeyer DL, Allen PM et al (2005) Class II-restricted T cell receptor engineered in vitro for higher affinity retains peptide specificity and function. Proc Natl Acad Sci U S A 102:19033–19038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Li Y, Moysey R, Molloy PE et al (2005) Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol 23:349–354

    Article  CAS  PubMed  Google Scholar 

  15. Liddy N, Bossi G, Adams KJ et al (2012) Monoclonal TCR-redirected tumor cell killing. Nat Med 18:980–987. doi:10.1038/nm.2764, nm.2764 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Chames P, Willemsen RA, Rojas G et al (2002) TCR-like human antibodies expressed on human CTLs mediate antibody affinity-dependent cytolytic activity. J Immunol 169:1110–1118

    Article  CAS  PubMed  Google Scholar 

  17. Cohen CJ, Sarig O, Yamano Y et al (2003) Direct phenotypic analysis of human MHC class I antigen presentation: visualization, quantitation, and in situ detection of human viral epitopes using peptide-specific, MHC-restricted human recombinant antibodies. J Immunol 170:4349–4361

    Article  CAS  PubMed  Google Scholar 

  18. Denkberg G, Stronge VS, Zahavi E et al (2008) Phage display-derived recombinant antibodies with TCR-like specificity against alpha-galactosylceramide and its analogues in complex with human CD1d molecules. Eur J Immunol 38:829–840. doi:10.1002/eji.200737518

    Article  CAS  PubMed  Google Scholar 

  19. Verma B, Neethling FA, Caseltine S et al (2010) TCR mimic monoclonal antibody targets a specific peptide/HLA class I complex and significantly impedes tumor growth in vivo using breast cancer models. J Immunol 184:2156–2165. doi:10.4049/jimmunol.0902414, jimmunol.0902414 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Mareeva T, Martinez-Hackert E, Sykulev Y (2008) How a T cell receptor-like antibody recognizes major histocompatibility complex-bound peptide. J Biol Chem 283:29053–29059. doi:10.1074/jbc.M804996200, M804996200 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Richman SA, Kranz DM (2007) Display, engineering, and applications of antigen-specific T cell receptors. Biomol Eng 24:361–373

    Article  CAS  PubMed  Google Scholar 

  22. Stone JD, Chervin AS, Aggen DH et al (2012) T cell receptor engineering. Methods Enzymol 503:189–222. doi:10.1016/B978-0-12-396962-0.00008-2, B978-0-12-396962-0.00008-2 [pii]

    CAS  PubMed  Google Scholar 

  23. Oates J, Jakobsen BK (2013) ImmTACs: novel bi-specific agents for targeted cancer therapy. Oncoimmunology 2:e22891. doi:10.4161/onci.22891, 2012ONCOIMM0357 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  24. Stone JD, Yin Y, Mo M et al (2012) Engineering high-affinity T cell receptor/cytokine fusions for therapeutic targeting. In Kaumaya P (ed) Protein engineering, ISBN: 978-953-51-0037-9, InTech

    Google Scholar 

  25. Stone JD, Chervin AS, Schreiber H et al (2012) Design and characterization of a protein superagonist of IL-15 fused with IL-15Ralpha and a high-affinity T cell receptor. Biotechnol Prog 28:1588–1597. doi:10.1002/btpr.1631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Soto CM, Stone JD, Chervin AS et al (2013) MHC-class I-restricted CD4 T cells: a nanomolar affinity TCR has improved anti-tumor efficacy in vivo compared to the micromolar wild-type TCR. Cancer Immunol Immunother 62:359–369. doi:10.1007/s00262-012-1336-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Stone JD, Kranz DM (2013) Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies. Front Immunol 4:244. doi:10.3389/fimmu.2013.00244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhao Y, Bennett AD, Zheng Z et al (2007) High-affinity TCRs generated by phage display provide CD4+ T cells with the ability to recognize and kill tumor cell lines. J Immunol 179:5845–5854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Chervin AS, Stone JD, Holler PD et al (2009) The impact of TCR-binding properties and antigen presentation format on T cell responsiveness. J Immunol 183:1166–1178. doi:10.4049/jimmunol.0900054, jimmunol.0900054 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kieke MC, Shusta EV, Boder ET et al (1999) Selection of functional T cell receptor mutants from a yeast surface- display library. Proc Natl Acad Sci U S A 96:5651–5656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Richman SA, Aggen DH, Dossett ML et al (2009) Structural features of T cell receptor variable regions that enhance domain stability and enable expression as single-chain ValphaVbeta fragments. Mol Immunol 46:902–916. doi:10.1016/j.molimm.2008.09.021, S0161-5890(08)00665-2 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Aggen DH, Chervin AS, Insaidoo FK et al (2011) Identification and engineering of human variable regions that allow expression of stable single-chain T cell receptors. Protein Eng Des Sel 24:361–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Smith SN, Sommermeyer D, Piepenbrink KH et al (2013) Plasticity in the contribution of T cell receptor variable region residues to binding of peptide-HLA-A2 complexes. J Mol Biol. doi:10.1016/j.jmb.2013.08.007, S0022-2836(13)00510-X [pii]

    Google Scholar 

  34. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  PubMed  Google Scholar 

  35. Shusta EV, Kieke MC, Parke E et al (1999) Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol 292:949–956

    Article  CAS  PubMed  Google Scholar 

  36. Shusta EV, Holler PD, Kieke MC et al (2000) Directed evolution of a stable scaffold for T-cell receptor engineering. Nat Biotechnol 18:754–759

    Article  CAS  PubMed  Google Scholar 

  37. Boder ET, Wittrup KD (2000) Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430–444

    CAS  PubMed  Google Scholar 

  38. Feldhaus M, Siegel R, Opresko L et al (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170

    Article  CAS  PubMed  Google Scholar 

  39. Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–473. doi:10.1016/j.sbi.2007.08.012, S0959-440X(07)00119-4 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Chao G, Lau WL, Hackel BJ et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768. doi:10.1038/nprot.2006.94, nprot.2006.94 [pii]

    Article  CAS  PubMed  Google Scholar 

  41. Benatuil L, Perez JM, Belk J et al (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159. doi:10.1093/protein/gzq002, gzq002 [pii]

    Article  CAS  PubMed  Google Scholar 

  42. Soo Hoo WF, Lacy MJ, Denzin LK et al (1992) Characterization of a single-chain T cell receptor expressed in E. coli. Proc Natl Acad Sci 89:4759–4763

    Article  Google Scholar 

  43. Gietz RD, Schiestl RH, Willems A et al (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Google Scholar 

  44. Richman SA, Kranz DM, Stone JD (2009) Biosensor detection systems: engineering stable, high-affinity bioreceptors by yeast surface display. Methods Mol Biol 504:323–350. doi:10.1007/978-1-60327-569-9_19

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Dal Porto J, Johansen TE, Catipovic B et al (1993) A soluble divalent class I major histocompatibility complex molecule inhibits alloreactive T cells at nanomolar concentrations. Proc Natl Acad Sci U S A 90:6671–6675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Altman JD, Moss PAH, Goulder PJR et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96

    Article  CAS  PubMed  Google Scholar 

  47. Stone JD, Artyomov MN, Chervin AS et al (2011) Interaction of streptavidin-based peptide-MHC oligomers (tetramers) with cell-surface TCRs. J Immunol 187:6281–6290. doi:10.4049/jimmunol.1101734, jimmunol.1101734 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Garboczi DN, Ghosh P, Utz U et al (1996) Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384:134–141

    Article  CAS  PubMed  Google Scholar 

  49. Garboczi DN, Utz U, Ghosh P et al (1996) Assembly, specific binding, and crystallization of a human TCR-alphabeta with an antigenic Tax peptide from human T lymphotropic virus type 1 and the class I MHC molecule HLA-A2. J Immunol 157:5403–5410

    CAS  PubMed  Google Scholar 

  50. Toebes M, Coccoris M, Bins A et al (2006) Design and use of conditional MHC class I ligands. Nat Med 12:246–251. doi:10.1038/nm1360, nm1360 [pii]

    Article  CAS  PubMed  Google Scholar 

  51. Stone JD, Chervin AS, Kranz DM (2009) T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 126:165–176. doi:10.1111/j.1365-2567.2008.03015.x, IMM3015 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466

    Article  CAS  PubMed  Google Scholar 

  53. Chlewicki LK, Holler PD, Monti BC et al (2005) High-affinity, peptide-specific T cell receptors can be generated by mutations in CDR1, CDR2 or CDR3. J Mol Biol 346:223–239

    Article  CAS  PubMed  Google Scholar 

  54. Dunn SM, Rizkallah PJ, Baston E et al (2006) Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity. Protein Sci 15:710–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Horton RM, Cai ZL, Ho SN et al (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8:528–535

    CAS  PubMed  Google Scholar 

  56. Chervin AS, Stone JD, Soto CM et al (2013) Design of T-cell receptor libraries with diverse binding properties to examine adoptive T-cell responses. Gene Ther 20(6):634–644. doi: 10.1038/gt.2012.80

  57. Orr BA, Carr LM, Wittrup KD et al (2003) Rapid method for measuring ScFv thermal stability by yeast surface display. Biotechnol Prog 19:631–638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by various NIH grants over the years (DMK), including current NIH grants P01 CA097296 (DMK), T32 GM070421 (SNS), and F30 CA180723 (DTH), and a grant from the Melanoma Research Alliance (DMK). We thank Dane Wittrup for helpful discussions, and past and current members of the Kranz lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Smith, S.N., Harris, D.T., Kranz, D.M. (2015). T Cell Receptor Engineering and Analysis Using the Yeast Display Platform. In: Liu, B. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 1319. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2748-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2748-7_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2747-0

  • Online ISBN: 978-1-4939-2748-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics