Skip to main content

In Vivo Production of Small Recombinant RNAs Embedded in a 5S rRNA-Derived Protective Scaffold

  • Protocol
RNA Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1316))

Abstract

Preparative synthesis of RNA is a challenging task that is usually accomplished using either chemical or enzymatic polymerization of ribonucleotides in vitro. Herein, we describe an alternative approach in which RNAs of interest are expressed as a fusion with a 5S rRNA-derived scaffold. The scaffold provides protection against cellular ribonucleases resulting in cellular accumulations comparable to those of regular ribosomal RNAs. After isolation of the chimeric RNA from the cells, the scaffold can be removed if necessary by deoxyribozyme-catalyzed cleavage followed by preparative electrophoretic separation of the cleavage reaction products. The protocol is designed for sustained production of high quality RNA on the milligram scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC (2010) The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 34:883–923

    CAS  PubMed  Google Scholar 

  2. Condon C (2007) Maturation and degradation of RNA in bacteria. Curr Opin Microbiol 10:271–278

    Article  CAS  PubMed  Google Scholar 

  3. Stoecklin G, Mühlemann O (2013) RNA decay mechanisms: specificity through diversity. Biochim Biophys Acta 1829:487–490

    Article  CAS  PubMed  Google Scholar 

  4. Gasiunas G, Sinkunas T, Siksnys V (2014) Molecular mechanisms of CRISPR-mediated microbial immunity. Cell Mol Life Sci 71:449–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Pitulle C, Hedenstierna KO, Fox GE (1995) A novel approach for monitoring genetically engineered microorganisms by using artificial, stable RNAs. Appl Environ Microbiol 61:3661–3666

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Ammons D, Rampersad J, Fox GE (1998) A genomically modified marker strain of Escherichia coli. Curr Microbiol 37:341–346

    Article  CAS  PubMed  Google Scholar 

  7. Tucker DL, Karouia F, Wang J, Luo Y, Li TB, Willson RC, Fofanov Y, Fox GE (2005) Effect of an artificial RNA marker on gene expression in Escherichia coli. Appl Environ Microbiol 71:4156–4159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ammons D, Rampersad J, Fox GE (1999) 5S rRNA gene deletions cause an unexpectedly high fitness loss in Escherichia coli. Nucleic Acids Res 27:637–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zhang X, Potty AS, Jackson GW, Stepanov V, Tang A, Liu Y, Kourentzi K, Strych U, Fox GE, Willson RC (2009) Engineered 5S ribosomal RNAs displaying aptamers recognizing vascular endothelial growth factor and malachite green. J Mol Recognit 22:154–161

    Article  CAS  PubMed  Google Scholar 

  10. Pitulle C, D'Souza L, Fox GE (1997) A low molecular weight artificial RNA of unique size with multiple probe target regions. Syst Appl Microbiol 20:133–136

    Article  CAS  PubMed  Google Scholar 

  11. D'Souza LM, Larios-Sanz M, Setterquist RA, Willson RC, Fox GE (2003) Small RNA sequences are readily stabilized by inclusion in a carrier rRNA. Biotechnol Prog 19:734–738

    Article  PubMed  Google Scholar 

  12. Liu Y, Stepanov VG, Strych U, Willson RC, Jackson GW, Fox GE (2010) DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli. BMC Biotechnol 10:85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cruz RP, Withers JB, Li Y (2004) Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme. Chem Biol 11:57–67

    Article  CAS  PubMed  Google Scholar 

  14. Schlosser K, Gu J, Sule L, Li Y (2008) Sequence-function relationships provide new insight into the cleavage site selectivity of the 8-17 RNA-cleaving deoxyribozyme. Nucleic Acids Res 36:1472–1481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Schlosser K, Gu J, Lam JC, Li Y (2008) In vitro selection of small RNA-cleaving deoxyribozymes that cleave pyrimidine-pyrimidine junctions. Nucleic Acids Res 36:4768–4777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lam JC, Kwan SO, Li Y (2011) Characterization of non-8-17 sequences uncovers structurally diverse RNA-cleaving deoxyribozymes. Mol Biosyst 7:2139–2146

    Article  CAS  PubMed  Google Scholar 

  17. Cairns MJ, King A, Sun LQ (2003) Optimisation of the 10-23 DNAzyme-substrate pairing interactions enhanced RNA cleavage activity at purine-cytosine target sites. Nucleic Acids Res 31:2883–2889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Borodina TA, Lehrach H, Soldatov AV (2003) DNA purification on homemade silica spin-columns. Anal Biochem 321:135–137

    Article  CAS  PubMed  Google Scholar 

  19. Brosius J (1984) Toxicity of an overproduced foreign gene product in Escherichia coli and its use in plasmid vectors for the selection of transcription terminators. Gene 27:161–172

    Article  CAS  PubMed  Google Scholar 

  20. Hartmann RK, Bindereif A, Schön A, Westhof E (2005) Appendix: UV spectroscopy for the quantitation of RNA. In: Hartmann RK, Bindereif A, Schön A, Westhof E (eds) Handbook of RNA biochemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 911

    Chapter  Google Scholar 

  21. Cavaluzzi MJ, Borer PN (2004) Revised UV extinction coefficients for nucleoside-5′-monophosphates and unpaired DNA and RNA. Nucleic Acids Res 32:e13

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Fox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stepanov, V.G., Fox, G.E. (2015). In Vivo Production of Small Recombinant RNAs Embedded in a 5S rRNA-Derived Protective Scaffold. In: Ponchon, L. (eds) RNA Scaffolds. Methods in Molecular Biology, vol 1316. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2730-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2730-2_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2729-6

  • Online ISBN: 978-1-4939-2730-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics