Skip to main content

An Effective Method for Specific Gene Silencing in Escherichia coli Using Artificial Small RNA

  • Protocol
RNA Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1316))

Abstract

Knockdown or silencing of a specific gene presents a powerful strategy for elucidating gene function in a variety of organisms. To date, efficient silencing methods have been established in eukaryotes, but not bacteria. In this chapter, an efficient and versatile gene silencing method using artificial small RNA (afsRNA) is described. For this purpose, target-recognizing sequences were introduced in specially designed RNA scaffolds to exist as single-stranded stretches in afsRNA. The translation initiation region of target genes was used as the sequence for afsRNA recognition, based on the theory that this site is usually highly accessible to ribosomes, and therefore, possibly, afsRNA.

Two genes transcribed as monocistrons were tested with our protocol. Both genes were effectively silenced by their cognate afsRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3:pii: a003798

    Article  Google Scholar 

  3. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589

    Article  CAS  PubMed  Google Scholar 

  5. Sobrero P, Valverde C (2012) The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 38:276–299

    Article  CAS  PubMed  Google Scholar 

  6. Sharma V, Yamamura A, Yokobayashi Y (2012) Engineering artificial small RNAs for conditional gene silencing in Escherichia coli. ACS Synth Biol 1:6–13

    Article  CAS  PubMed  Google Scholar 

  7. Man S, Cheng R, Miao C, Gong Q, Gu Y, Lu X, Han F, Yu W (2011) Artificial trans-encoded small non-coding RNAs specifically silence the selected gene expression in bacteria. Nucleic Acids Res 39:e50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yoo SM, Na D, Lee SY (2013) Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli. Nat Protoc 8:1694–1707

    Article  CAS  PubMed  Google Scholar 

  9. Joe CL, Ryan JB, Christina DS (2011) Engineering biological systems with synthetic RNA molecules. Mol Cell 43:915–926

    Article  Google Scholar 

  10. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15:331–341

    Article  CAS  PubMed  Google Scholar 

  12. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  CAS  PubMed  Google Scholar 

  13. Han K, Kim KS, Bak G, Park H, Lee Y (2010) Recognition and discrimination of target mRNAs by Sib RNAs, a cis-encoded sRNA family. Nucleic Acids Res 38:5851–5866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Park H, Bak G, Kim SC, Lee Y (2013) Exploring sRNA-mediated gene silencing mechanisms using artificial small RNAs derived from a natural RNA scaffold in Escherichia coli. Nucleic Acids Res 41:3787–3804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Murakawa GJ, Nierlich DP (1989) Mapping the lacZ ribosome binding site by RNA footprinting. Biochemistry 28:8067–8072

    Article  CAS  PubMed  Google Scholar 

  16. Park H, Yoon Y, Suk S, Lee JY, Lee Y (2014) Effects of different target sites on antisense RNA-mediated regulation of gene expression. BMB Rep 47:619–624

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Intelligent Synthetic Biology Center of Global Frontier Project (2012M3A6A8054837) and the National Research Foundation of Korea (NRF) Grant (2010-0029167, 2011-0020322) by the Korean Government (MSIP), and the KRIBB initiative programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghoon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bak, G., Choi, J.S., Kim, W., Suk, S., Lee, Y. (2015). An Effective Method for Specific Gene Silencing in Escherichia coli Using Artificial Small RNA. In: Ponchon, L. (eds) RNA Scaffolds. Methods in Molecular Biology, vol 1316. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2730-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2730-2_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2729-6

  • Online ISBN: 978-1-4939-2730-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics