Production of Plasmid DNA as Pharmaceutical

  • Marco Schmeer
  • Martin Schleef
Part of the Methods in Molecular Biology book series (MIMB, volume 1317)


Pharmaceutical applications of plasmid DNA require certain quality standards, depending on the intended use of the plasmids. That is, for direct gene transfer into human, GMP Grade is mandatory, however, for GMP production of for example viral vectors (AAV or mRNA etc.), the plasmid DNA used has not to be produced under GMP necessarily.

Here we summarize important features of producing plasmid DNA, ensuring the required quality for the intended (pharmaceutical) application.

Key words

Plasmid DNA Gene therapy Vaccination Vector production Fermentation Plasmid topology CGE analysis Quality assurance Quality control Pharmaceutical scale GMP grade High quality grade 


  1. 1.
    Alton EW, Middleton PG, Caplen NJ et al (1993) Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat Genet 5:135–142PubMedCrossRefGoogle Scholar
  2. 2.
    Caplen NJ, Gao X, Hayes P et al (1994) Gene therapy for cystic fibrosis in humans by liposome-mediated DNA transfer: U.K. regulatory process and production of resources. Gene Ther 1:139–147PubMedGoogle Scholar
  3. 3.
    Michel ML, Davis HL, Schleef M et al (1995) DNA-mediated immunization to the hepatitis B surface antigen in mice: Aspects of the humoral response mimic hepatitis B viral infection in humans. Proc Natl Acad Sci U S A 92:5307–5311PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Major ME, Vitvitski L, Mink MA et al (1995) DNA based immunisation using chimeric vectors for the induction of immune responses against the hepatitis C virus nucleocapsid. J Virol 69:5798–5805PubMedCentralPubMedGoogle Scholar
  5. 5.
    Le Borgne S, Mancini M, Le Grand R, Schleef M et al (1998) In vivo induction of specific cytotoxic T lymphocytes in mice and rhesus macaques immunized with DNA vector encoding HIV epitope fused with hepatitis B surface antigen. Virology 240:304–315PubMedCrossRefGoogle Scholar
  6. 6.
    Gregoriadis G (1998) Genetic vaccines: strategies for optimization. Pharm Res 15:661–670PubMedCrossRefGoogle Scholar
  7. 7.
    Schirmbeck R, van Kampen J, Metzger K et al (1999) DNA-based vaccination with polycistronic expression plasmids. In: Lowrie DB, Whalen RG (eds) DNA vaccines: methods and protocols. Humana, Totowa, NJ, pp 313–322CrossRefGoogle Scholar
  8. 8.
    Kanellos T, Sylvester ID, Colin RH et al (1999) DNA is as effective as protein at inducing antibody in fish. Vaccine 17:965–972PubMedCrossRefGoogle Scholar
  9. 9.
    Wahren B, Liu M (2005) DNA vaccines—an overview. In: Schleef M (ed) DNA pharmaceuticals: formulation and delivery in gene therapy, DNA vaccination and immunotherapy. Wiley-VCH, Weinheim, pp 1–6Google Scholar
  10. 10.
    Schwarz B, Kempf T, Schillinger U et al (2008) Cloning of the feline cytokines IL-2, IFNy and GM-CSF for an adjuvant nonviral genetherapy of feline fibrosarcoma. Kleintierprax 52(9):569–578Google Scholar
  11. 11.
    Schleef M (1999) Issues of large-scale plasmid manufacturing. In: Rehm HJ, Reed G, Pühler A, Stadler P (eds) Biotechnology, vol. 5a: Recombinant proteins, monoclonal antibodies and therapeutic genes (Mountain A, Ney U, Schomburg D volume eds) Wiley-VCH: Weinheim, pp 443–470Google Scholar
  12. 12.
    Hoare M, Levy MS, Bracewell DG et al (2005) Bioprocess engineering issues that would be face in producing a DNA vaccine at up to 100 m3 fermentation scale for an influenza pandemic. Biotechnol Prog 21:157–1592CrossRefGoogle Scholar
  13. 13.
    Urthaler J, Buchinger W, Necina R (2005) Improved downstream process for the production of plasmid DNA for gene therapy. Act Biochim Pol 52:703–711Google Scholar
  14. 14.
    Schmidt T, Friehs K, Schleef M et al (1999) Quantitative analysis of plasmid forms by agarose and capillary gel electrophoresis. Anal Biochem 274:235–240PubMedCrossRefGoogle Scholar
  15. 15.
    Schmidt T, Friehs K, Flaschel E (2001) Structures of plasmid DNA. In: Schleef M (ed) Plasmids for therapy and vaccination. Wiley-VCH, Weinheim, pp 29–43CrossRefGoogle Scholar
  16. 16.
    Schleef M, Schmidt T (2004) Animal-free production of ccc-supercoiled plasmids for research and clinical applications. J Gene Med 6:S45–S53PubMedCrossRefGoogle Scholar
  17. 17.
    EMEA (2001) Note for guidance on minimising the risk of transmitting animal spongiform encephalopathy agents via human and veterinary medicinal products. CPMP/410/01 rev 1, LondonGoogle Scholar
  18. 18.
    Blaesen M, Friehs K, Flaschel E (2007) Recycling of bacterial biomass in a process of L-threonine production by means of a recombinant strain of Escherichia coli. J Biol 132:431–437Google Scholar
  19. 19.
    Voss C, Schmidt T, Schleef M et al (2004) Effect of ammonium chloride on plasmid DNA production in high cell density batch culture for biopharmaceutical use. J Chem Technol Biotechnol 79:57–62CrossRefGoogle Scholar
  20. 20.
    Voss C, Flaschel E (2010) Method for producing extra-chromosomal nucleic acid molecules, US 7,842,481 B2Google Scholar
  21. 21.
    Green AP (1999) Purification of supercoiled plasmid. In: Lowrie DB, Whalen RG (eds) DNA vaccines: methods and protocols. Humana, Totowa, NJ, pp 1–9CrossRefGoogle Scholar
  22. 22.
    Chen Z, Ruffner D (1998) Compositions and methods for rapid isolation of plasmid DNA. WO 98/16653Google Scholar
  23. 23.
    Murphy JC, Wibbenmeyer JA, Fax GE, Willson RC (1999) Purification of plasmid DNA using selective precipitation by compaction agents. Nat Biotchnol 17:822–823CrossRefGoogle Scholar
  24. 24.
    Hyde SC, Pringle IA, Abdullah S et al (2008) CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 26(5):549–551PubMedCrossRefGoogle Scholar
  25. 25.
    Schleef M, Baier R, Walther W et al (2006) Long-Term stability studa and topology analysis of plasmid DNA by capillary gel electrophoresis. BioProcess Int 4(8):38–40Google Scholar
  26. 26.
    Plank C, Scherer F, Rudolph C (2005) Localized nucleic acid delivery: a discussion of selected methods. In: Schleef M (ed) DNA pharmaceuticals: formulation and delivery in gene therapy, DNA vaccination and immunotherapy. Wiley-VCH, Weinheim, pp 55–116Google Scholar
  27. 27.
    EMEA (2008) Scientific guidelines for human medicinal products.
  28. 28.
    World Health Organsization expert committee on biological standardization (2007), 56th report, WHO technical series 941Google Scholar
  29. 29.
    DeLeys RJ, Jackson DA (1975) Dye titrations of covalently closed supercoiled DNA analysed by agarose gel electrophoresis. Biochem Biophys Res Commun 69:446–454CrossRefGoogle Scholar
  30. 30.
    Johnson PH, Grossmann LI (1977) Electrophoresis of DNA in agarose gels. Optimizing separations of conformationsl isomers of double- and single-stranded DNAs. Biochemistry 16:4217–4225PubMedCrossRefGoogle Scholar
  31. 31.
    Meyers JA, Sanchez D, Elwell LP et al (1976) Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J Bacteriol 127:1529–1537PubMedCentralPubMedGoogle Scholar
  32. 32.
    Pulleyblank DE, Morgan AR (1975) The sense of naturally occuring superhelices and the unwinding angle of intercalated ethidium. J Mol Biol 91:1–13PubMedCrossRefGoogle Scholar
  33. 33.
    Tse YC, Wang JC (1980) E. coli and M. luteus DNA topoisomerase I can catalyze catenation or decatenation of double-stranded rings. Cell 22:269–276PubMedCrossRefGoogle Scholar
  34. 34.
    Martin R (1996) Gel electrophoresis: nucleic acids. Bios Scientific Publishers, London, UKGoogle Scholar
  35. 35.
    Sinden RR (1994) DNA structure and function. Academic, San Diego, CAGoogle Scholar
  36. 36.
    Oliver SG, Ward JM (1985) A dictionary of genetic engineering. Cambridge University Press, CambridgeGoogle Scholar
  37. 37.
    Maucksch C, Connor B, Rudolph C (2013) Plasmid DNA concatemers: influence of plasmid structure on transfection efficiency. In: Schleef M (ed) Minicircle and miniplasmid DNA vectors—the future of non-viral and viral gene transfer. Weinheim, Wiley-BlackwellGoogle Scholar
  38. 38.
    Serwer P, Allen JA (1984) Conformation of double-stranded DNA during agarose gel electrophoresis: Fractionation of linear and circular molecules with molecular weights between 3*106 and 25*106. Biochemistry 23:922–927PubMedCrossRefGoogle Scholar
  39. 39.
    Garner MM, Chrambach A (1992) Resolution of circular, nicked circular and linear DNA, 4 kb in length, by electrophoresis in polyacrylamide solutions. Electrophoresis 13:176–178PubMedCrossRefGoogle Scholar
  40. 40.
    Walther W, Stein U, Fichtner I, Voss C, Schmidt T, Schleef M, Nellessen T, Schlag PM (2002) Intratumoral low-volume jet-injection for efficient nonviral gene transfer. Mol Biotechnol 21(2):105–115PubMedCrossRefGoogle Scholar
  41. 41.
    Gengenbach RJ (2008) GMP-qualifizierung und validierung von wirkstoffanlagen. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  42. 42.
    EMEA (2005) Guideline on development and manufacture of lentiviral vectors. PMP/BWP/2458/03, LondonGoogle Scholar
  43. 43.
    EMEA (2001) Note for guidance on the quality, preclinical and clinical aspects of gene transfer medical products. CPMP/BWP/3088/99, LondonGoogle Scholar
  44. 44.
    Schleef M (ed) (2013) Minicircle and Miniplasmid DNA vectors—the future of non-viral and viral gene transfer. Weinheim, Wiley-BlackwellGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.PlasmidFactory GmbH & Co. KGBielefeldGermany

Personalised recommendations