Skip to main content

Assessment of Changes in Global DNA Methylation Levels by Pyrosequencing® of Repetitive Elements

  • Protocol
Pyrosequencing

Abstract

Transposable elements (TE) comprise half of the human genome. LINE-1 and ALU are the most common TE, and they have been used to assess changes in the DNA methylation of repetitive elements in response to intrinsic and extrinsic cellular events. Pyrosequencing® is a real-time sequencing technology that enables quantitative assessment of TE methylation at single-base resolution. In Pyrosequencing, a region of interest is first amplified from bisulfite-converted DNA by polymerase chain reaction (PCR), before PCR amplicons are rendered single stranded and annealed with the Pyrosequencing primer prior to sequencing. In this chapter, we provide an overview of the analysis of repetitive element DNA methylation by bisulfite Pyrosequencing, and we describe a protocol that can be used for such purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lander ES, Linton LM, Birren B, International Human Genome Sequencing C et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  2. Byun HM, Motta V, Panni T et al (2013) Evolutionary age of repetitive element subfamilies and sensitivity of DNA methylation to airborne pollutants. Parti Fibre Toxicol 10:28

    Article  CAS  Google Scholar 

  3. Su J, Shao X, Liu H et al (2012) Genome-wide dynamic changes of DNA methylation of repetitive elements in human embryonic stem cells and fetal fibroblasts. Genomics 99:10–17

    Article  CAS  PubMed  Google Scholar 

  4. Choi SH, Worswick S, Byun HM et al (2009) Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer. Int J Cancer 125:723–729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Guo L, Byun HM, Zhong J et al (2014) Effects of short-term exposure to inhalable particulate matter on DNA methylation of tandem repeats. Environ Mol Mutagen 55:322–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Florea A-M (2013) DNA methylation pyrosequencing assay is applicable for the assessment of epigenetic active environmental or clinical relevant chemicals. Biomed Res Int 2013:486072

    Article  PubMed Central  PubMed  Google Scholar 

  7. Lai RK, Chen Y, Guan X et al (2014) Genome-wide methylation analyses in glioblastoma multiforme. PloS One 9:e89376

    Article  PubMed Central  PubMed  Google Scholar 

  8. Yang AS, Estecio MR, Doshi K et al (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38

    Article  PubMed Central  PubMed  Google Scholar 

  9. Baccarelli A, Wright R, Bollati V et al (2010) Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiol 21:819–828

    Article  Google Scholar 

  10. Zhu ZZ, Hou L, Bollati V et al (2012) Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis. Int J Epidemiol 41:126–139

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wagner I, Capesius I (1981) Determination of 5-methylcytosine from plant DNA by high-performance liquid chromatography. Biochim Biophys Acta 654:52–56

    Article  CAS  PubMed  Google Scholar 

  12. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  CAS  PubMed  Google Scholar 

  13. Baba Y, Huttenhower C, Nosho K et al (2010) Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer 9:125

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lisanti S, Omar WA, Tomaszewski B et al (2013) Comparison of methods for quantification of global DNA methylation in human cells and tissues. PloS One 8:e79044

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Tabish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tabish, A.M., Baccarelli, A.A., Godderis, L., Barrow, T.M., Hoet, P., Byun, HM. (2015). Assessment of Changes in Global DNA Methylation Levels by Pyrosequencing® of Repetitive Elements. In: Lehmann, U., Tost, J. (eds) Pyrosequencing. Methods in Molecular Biology, vol 1315. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2715-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2715-9_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2714-2

  • Online ISBN: 978-1-4939-2715-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics