The History of Pyrosequencing®

  • Pål Nyrén
Part of the Methods in Molecular Biology book series (MIMB, volume 1315)


One late afternoon in the beginning of January 1986, bicycling from the lab over the hill to the small village of Fulbourn, the idea for an alternative DNA sequencing technique came to my mind. The basic concept was to follow the activity of DNA polymerase during nucleotide incorporation into a DNA strand by analyzing the pyrophosphate released during the process. Today, the technique is used in multidisciplinary fields in academic, clinical, and industrial settings all over the word. This technique can be used for both single-base sequencing and whole-genome sequencing, depending on the format used.

In this chapter, I give my personal account of the development of Pyrosequencing®—beginning on a winter day in 1986, when I first envisioned the method—until today, nearly 30 years later.

Key words

Pyrosequencing® Sequencing Bioluminescence Pyrophosphate 


  1. 1.
    Nyrén P (2001) Method for sequencing DNA based on the detection of the release of pyrophosphate and enzymatic nucleotide degradation. Patents: US 6 258 568BI and WO98/28440Google Scholar
  2. 2.
    Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate detection. Science 281:363–365PubMedCrossRefGoogle Scholar
  3. 3.
    Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedCentralPubMedGoogle Scholar
  4. 4.
    Runswick MJ, Powell SJ, Nyrén P et al (1987) Sequence of the bovine mitochondrial phosphate carrier protein: structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein. EMBO J 6:1367–1373PubMedCentralPubMedGoogle Scholar
  5. 5.
    Nyrén P, Lundin A (1985) Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal Biochem 151:504–509PubMedCrossRefGoogle Scholar
  6. 6.
    Nyrén P, Nore BF, Baltscheffsky M (1986) Studies on photosynthetic inorganic pyrophosphate formation in Rhodospirillum rubrum chromatophores. Biochim Biophys Acta 851:276–282PubMedCrossRefGoogle Scholar
  7. 7.
    Nyrén P, Nore BF, Baltscheffsky M (1986) Inorganic pyrophosphate synthesis after a short light flash in chromatophores from Rhodospirillum rubrum. Photobiochem Photobiophys 11:189–196Google Scholar
  8. 8.
    Nyrén P (1987) Enzymatic method for continuous monitoring of DNA-polymerase activity. Anal Biochem 167:235–238PubMedCrossRefGoogle Scholar
  9. 9.
    Melamede RJ (1985) Automatable process for sequencing nucleotide. US Patent 4863849Google Scholar
  10. 10.
    Ståhl S, Hultman T, Moks T et al (1988) Solid phase DNA sequencing using the biotin-avidin system. Nucleic Acids Res 16:3025–3038PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Nyrén P (1994) Apyrase immobilized on paramagnetic beads used to improve detection limits in bioluminometric ATP monitoring. J Biolumin Chemilumin 9:29–34PubMedCrossRefGoogle Scholar
  12. 12.
    Nyrén P, Pettersson B, Uhlén M (1993) Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal Biochem 208:171–175PubMedCrossRefGoogle Scholar
  13. 13.
    Nyrén P, Karamouhamed S, Ronaghi M (1997) Detection of single-base changes using a bioluminometric primer extension assay. Anal Biochem 244:367–373PubMedCrossRefGoogle Scholar
  14. 14.
    Ronaghi M, Karamohamed S, Pettersson B et al (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89PubMedCrossRefGoogle Scholar
  15. 15.
    Nyrén P (1994) A method for the detection of cells, cell lysis or cell-lysing activity. Swedish patent applicationGoogle Scholar
  16. 16.
    Nyrén P, Edwin V (1994) Inorganic pyrophosphate-based detections: detection and enumeration of cells. Anal Biochem 220:39–45PubMedCrossRefGoogle Scholar
  17. 17.
    Nyrén P, Edwin V (1994) Inorganic pyrophosphate-based detections: detection and quantification of cell lysis and cell-lysing activity. Anal Biochem 220:46–52PubMedCrossRefGoogle Scholar
  18. 18.
    Karamohamed S, Nordström T, Nyrén P (1999) A real-time bioluminometric method for detection of nucleoside diphosphate kinase activity. Biotechniques 26:728–734PubMedGoogle Scholar
  19. 19.
    Karamouhamed S, Nilsson J, Nourizad K et al (1999) Production, purification, and real-time functional analysis of recombinant Saccharomyces cervisiae MET3 adenosine triphosphate sulfurylase expressed in Escherichia coli. Protein Expr Purif 15:381–388CrossRefGoogle Scholar
  20. 20.
    Ronaghi M (2000) Improved performance of pyrosequencing using single-stranded DNA-binding protein. Anal Biochem 286:282–288PubMedCrossRefGoogle Scholar
  21. 21.
    Nordström T, Gharizadeh B, Pourmand N et al (2001) Method enabling fast partial sequencing of cDNA clones. Anal Biochem 292:266–271PubMedCrossRefGoogle Scholar
  22. 22.
    Nordström T, Ronaghi M, Nyrén P (1999) Automation of a novel DNA sequencing method. In: Rod A, Pazzagli M, Kricka LJ, Stanley PE (eds) Bioluminescence and chemiluminescence: perspective for the 21st Century. John Wiley, Hoboken, NJ, pp 528–531Google Scholar
  23. 23.
    Gharizadeh B, Nordström T, Ahmadian A et al (2002) Long read pyrosequencing using pure 2′-deoxyadenosine-5′-O′-(1-thiotriphosphate) Sp-isomer. Anal Biochem 301:82–90PubMedCrossRefGoogle Scholar
  24. 24.
    Eriksson J, Gharizadeh B, Nourizad N et al (2004) 7-deaza-2′-deoxyadenosine-5′-triphosphate as an alternative nucleotide for the pyrosequencing technology. Nucleosides Nucleotides Nucleic Acids 23:1583–1594PubMedCrossRefGoogle Scholar
  25. 25.
    Gharizadeh B, Eriksson J, Nourizad N et al (2004) Improvements in pyrosequencing technology by employing sequenase polymerase. Anal Biochem 330:272–280PubMedCrossRefGoogle Scholar
  26. 26.
    Eriksson J, Nordström T, Nyrén P (2003) Method enabling firefly luciferase based bioluminometric assays at elevated temperature. Anal Biochem 314:158–161PubMedCrossRefGoogle Scholar
  27. 27.
    Eriksson J, Gharizadeh B, Nordström T et al (2004) Pyrosequencing technology at elevated temperature. Electrophoresis 25:20–27PubMedCrossRefGoogle Scholar
  28. 28.
    Nordström T, Ronaghi M, Morgenstern R et al (2000) Direct analysis of single nucleotide polymorphism on double-stranded DNA. Biotechnol Appl Biochem 31:107–112PubMedCrossRefGoogle Scholar
  29. 29.
    Nordström T, Nourizad K, Ronaghi M et al (2000) Method enabling pyrosequencing on double-stranded DNA. Anal Biochem 282:186–193PubMedCrossRefGoogle Scholar
  30. 30.
    Nordström T, Alderborn A, Nyrén P (2002) Method for one-step preparation of double-stranded DNA template applicable for use with pyrosequencing technology. J Biochem Biophys Methods 52:71–82PubMedCrossRefGoogle Scholar
  31. 31.
    Garcia CA, Ahmadian A, Garizadeh B et al (2000) Mutation detection by pyrosequencing: sequencing of exons 5 to 8 of the p53 tumor suppressor gene. Gene 253:249–257PubMedCrossRefGoogle Scholar
  32. 32.
    Nourizad N, Gharizadeh B, Nyrén P (2003) Method for clone checking. Electrophoresis 24:1712–1715PubMedCrossRefGoogle Scholar
  33. 33.
    Gharizadeh B, Ghaderi M, Donnelly D et al (2003) Multiple-primer DNA sequencing method. Electrophoresis 24:1145–1151PubMedCrossRefGoogle Scholar
  34. 34.
    Gharizadeh B, Ohlin A, Mölling P et al (2003) Multiple group-specific sequencing primers for reliable and rapid DNA sequencing. Mol Cell Probes 17:203–210PubMedCrossRefGoogle Scholar
  35. 35.
    Gharizadeh B, Oggionni M, Zheng B et al (2005) Type-specific multiple sequencing primers: a novel strategy for reliable and rapid genotyping of human papillomaviruses by pyrosequencing technology. J Mol Diagn 7:198–205PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Leamon JH, Lee WL, Tartaro KR et al (2003) A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reaction. Electrophoresis 24:3769–3777PubMedCrossRefGoogle Scholar
  37. 37.
    Ahmadian A, Gharizadeh B, Gustafsson A et al (2000) Single nucleotide polymorphism analysis by pyrosequencing. Anal Biochem 280:103–110PubMedCrossRefGoogle Scholar
  38. 38.
    Gruber JD, Colligan PB, Wolford JK (2002) Estimation of single nucleotide polymorphism allele frequency in DNA pools by using Pyrosequencing. Hum Genet 110:395–401PubMedCrossRefGoogle Scholar
  39. 39.
    Uhlmann K, Brinckmann A, Toliat MR et al (2002) Evaluation of a potential epigenetic biomarker by quantitative methyl-single nucleotide polymorphism analysis. Electrophoresis 23:4072–4079PubMedCrossRefGoogle Scholar
  40. 40.
    Ahmadian A, Lundeberg J, Nyrén P et al (2000) Analysis of the p53 tumor supressor gene by pyrosequencing. Biotechniques 28:140–147PubMedGoogle Scholar
  41. 41.
    Goriely A, McVean GA, Rojmyr M et al (2003) Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science 301:643–646PubMedCrossRefGoogle Scholar
  42. 42.
    Andreasson H, Asp A, Alderborn A et al (2002) Mitochondrial sequence analysis for forensic identification using pyrosequencing technology. Biotechniques 32:124–133PubMedGoogle Scholar
  43. 43.
    Allen M, Andreasson H (2005) Mitochondrial D-loop and coding sequence analysis using pyrosequencing. Methods Mol Biol 297:179–196PubMedGoogle Scholar
  44. 44.
    Cebula TA, Brown EW, Jackson SA et al (2005) Molecular applications for identifying microbial pathogens in the post-9/11 era. Expert Rev Mol Diagn 5:431–445PubMedCrossRefGoogle Scholar
  45. 45.
    Gharizadeh B, Norberg E, Löffler J et al (2004) Identification of medically important fungi by pyrosequencing technology. Mycoses 47:29–33PubMedCrossRefGoogle Scholar
  46. 46.
    Gharizadeh B, Kalantari M, Garcia C et al (2001) Typing of human papillomavirus (HPV) by pyrosequencing. Lab Invest 81:673–679PubMedCrossRefGoogle Scholar
  47. 47.
    Milan D, Jeon JT, Looft C et al (2000) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 19:1248–1251CrossRefGoogle Scholar
  48. 48.
    Mochida K, Yamazaki Y, Ogihara Y (2003) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics 270:371–377PubMedCrossRefGoogle Scholar
  49. 49.
    Danzer M, Niklas N, Stabentheiner S et al (2013) Rapid, scalable and highly automated HLA genotyping using next-generation sequencing: a transition from research to diagnostics. BMC Genomics 14:221PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Feng H, Shuda M, Chang Y et al (2008) Clonal integration of a polyomavirus in human merkel cell carcinoma. Science 319:1096–1100PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Hahn KR, Janzen TW, Thomas MC et al (2014) Single nucleotide repeat analysis of B. anthracis isolates in Canada through comparison of pyrosequencing and Sanger sequencing. Vet Microbiol 169:228–232PubMedCrossRefGoogle Scholar
  52. 52.
    McCann CD, Jordan JA (2014) Evaluation of MolYsis™ Complete DNA extraction method for detecting Staphylococcus aureus DNA from whole blood in a sepsis model. J Microbiol Methods 99:1–7PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Song Q, Wei G, Zhou G (2014) Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer. Food Chem 154:78–83PubMedCrossRefGoogle Scholar
  54. 54.
    Svantesson S, Westermark PO, Hellgren-Kotaleski J et al (2004) A mathematical model of the pyrosequencing reaction system. Biophys Chem 110:129–145PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiotechnologyRoyal Institute of TechnologyStockholmSweden

Personalised recommendations