Models of Perinatal Brain Injury in Premature and Term Newborns Resulting from Gestational Inflammation Due to Inactivated Group B Streptococcus (GBS), or Lipopolysaccharide (LPS) from E. coli and/or Immediately Postnatal Hypoxia-Ischemia (HI)

  • Julie Bergeron
  • Marie-Julie Allard
  • Clémence Guiraut
  • Mathilde Chevin
  • Alexandre Savard
  • Djordje Grbic
  • Marie-Elsa Brochu
  • Guillaume Sébire
Part of the Neuromethods book series (NM, volume 104)


It is known that gestational and/or perinatal inflammation combined or not with hypoxia-ischemia (HI) is a risk factor for brain injuries, but the mechanisms underlying are still unclear. This chapter discusses about animal models mimicking those conditions, allowing scientists to uncover mechanisms involved and to study the adverse effects on the offspring. Here is presented a model of maternal inflammation induced by inactivated Group B Streptococcus (Sect. 2) and two experimental designs using LPS. One explores the effects of prenatal LPS administration and/or immediately postnatal HI (Sect. 3) and the second one, the immediately postnatal exposure to inflammation induced by LPS and/or HI (Sect. 4). For each animal model, the rationale supporting the model is exposed, followed by the procedures and the results obtained, allowing experimenter to reproduce and use these presented animal models.

Key words

Gestational inflammation Perinatal inflammation Animal model Group B streptococcus LPS Hypoxia-ischemia 



This work was supported by scholarships from Fonds de la Recherche du Québec-Santé (FRQ-S), a grant from the Canadian Institutes of Health Research (CIHR), and a grant from the Foundation of Stars. G.S. is a member of the Centre de Recherche Clinique Etienne Le Bel du CHUS, of the Centre de Neurosciences de l’Université de Sherbrooke, and of the Centre de Recherche Mère & Enfant de l’Université de Sherbrooke. We thank Sylvie Girard for her contribution to the design of the LPS, and LPS + HI models.


  1. 1.
    Girard S, Kadhim H, Roy M et al (2009) Role of perinatal inflammation in cerebral palsy. Pediatr Neurol 40:168–174CrossRefPubMedGoogle Scholar
  2. 2.
    Salmaso N, Jablonska B, Scafidi J, Vaccarino FM, Gallo V (2014) Neurobiology of premature brain injury. Nat Neurosci 17:341–346PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Kadhim H, Tabarki B, De Prez C, Sebire G (2003) Cytokine immunoreactivity in cortical and subcortical neurons in periventricular leukomalacia: are cytokines implicated in neuronal dysfunction in cerebral palsy? Acta Neuropathol 105:209–216PubMedGoogle Scholar
  4. 4.
    Kadhim H, Tabarki B, Verellen G, De Prez C, Rona AM, Sebire G (2001) Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 56:1278–1284CrossRefPubMedGoogle Scholar
  5. 5.
    Kuzniewicz MW, Wi S, Qian Y, Walsh EM, Armstrong MA, Croen LA (2014) Prevalence and neonatal factors associated with autism spectrum disorders in preterm infants. J Pediatr 164:20–25CrossRefPubMedGoogle Scholar
  6. 6.
    Schendel D, Nelson KB, Blair E (2012) Neonatal encephalopathy or hypoxic-ischemic encephalopathy? Ann Neurol 72:984–985CrossRefPubMedGoogle Scholar
  7. 7.
    Girard S, Kadhim H, Beaudet N, Sarret P, Sebire G (2009) Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants. Neuroscience 158:673–682CrossRefPubMedGoogle Scholar
  8. 8.
    Brochu ME, Girard S, Lavoie K, Sebire G (2011) Developmental regulation of the neuroinflammatory responses to LPS and/or hypoxia-ischemia between preterm and term neonates: an experimental study. J Neuroinflammation 8:55PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Jonsson M, Agren J, Norden-Lindeberg S, Ohlin A, Hanson U (2014) Neonatal encephalopathy and the association to asphyxia in labor. Am J Obstet Gynecol 211:667PubMedGoogle Scholar
  10. 10.
    Ellenberg JH, Nelson KB (2013) The association of cerebral palsy with birth asphyxia: a definitional quagmire. Dev Med Child Neurol 55:210–216CrossRefPubMedGoogle Scholar
  11. 11.
    Kadhim H, Khalifa M, Deltenre P, Casimir G, Sebire G (2006) Molecular mechanisms of cell death in periventricular leukomalacia. Neurology 67:293–299CrossRefPubMedGoogle Scholar
  12. 12.
    Nelson KB, Bingham P, Edwards EM et al (2012) Antecedents of neonatal encephalopathy in the Vermont Oxford Network Encephalopathy Registry. Pediatrics 130:878–886PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Shevell A, Wintermark P, Benini R, Shevell M, Oskoui M (2014) Chorioamnionitis and cerebral palsy: lessons from a patient registry. Eur J Paediatr Neurol 18:301–307CrossRefPubMedGoogle Scholar
  14. 14.
    Wu YW, Colford JM Jr (2000) Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA 284:1417–1424CrossRefPubMedGoogle Scholar
  15. 15.
    Wu YW, Escobar GJ, Grether JK, Croen LA, Greene JD, Newman TB (2003) Chorioamnionitis and cerebral palsy in term and near-term infants. JAMA 290:2677–2684CrossRefPubMedGoogle Scholar
  16. 16.
    Chau V, Poskitt KJ, McFadden DE et al (2009) Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 66:155–164CrossRefPubMedGoogle Scholar
  17. 17.
    Chau V, McFadden DE, Poskitt KJ, Miller SP (2014) Chorioamnionitis in the pathogenesis of brain injury in preterm infants. Clin Perinatol 41:83–103CrossRefPubMedGoogle Scholar
  18. 18.
    Glass HC, Bonifacio SL, Chau V et al (2008) Recurrent postnatal infections are associated with progressive white matter injury in premature infants. Pediatrics 122:299–305CrossRefPubMedGoogle Scholar
  19. 19.
    Hagberg H, Gressens P, Mallard C (2012) Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 71:444–457CrossRefPubMedGoogle Scholar
  20. 20.
    Rees S, Harding R, Walker D (2011) The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci 29:551–563PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Roy M, Girard S, Larouche A, Kadhim H, Sebire G (2009) TNF-alpha system response in a rat model of very preterm brain injuries induced by lipopolysaccharide and/or hypoxia-ischemia. Am J Obstet Gynecol 201:493.e1–10CrossRefGoogle Scholar
  22. 22.
    Bergeron JD, Deslauriers J, Grignon S et al (2013) White matter injury and autistic-like behavior predominantly affecting male rat offspring exposed to group B streptococcal maternal inflammation. Dev Neurosci 35:504–515PubMedGoogle Scholar
  23. 23.
    Girard S, Sebire G, Kadhim H (2010) Proinflammatory orientation of the interleukin 1 system and downstream induction of matrix metalloproteinase 9 in the pathophysiology of human perinatal white matter damage. J Neuropathol Exp Neurol 69:1116–1129CrossRefPubMedGoogle Scholar
  24. 24.
    Girard S, Tremblay L, Lepage M, Sebire G (2010) IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. J Immunol 184:3997–4005CrossRefPubMedGoogle Scholar
  25. 25.
    Girard S, Sebire H, Brochu ME, Briota S, Sarret P, Sebire G (2012) Postnatal administration of IL-1Ra exerts neuroprotective effects following perinatal inflammation and/or hypoxic-ischemic injuries. Brain Behav Immun 26:1331–1339CrossRefPubMedGoogle Scholar
  26. 26.
    Girard S, Tremblay L, Lepage M, Sebire G (2012) Early detection of placental inflammation by MRI enabling protection by clinically relevant IL-1Ra administration. Am J Obstet Gynecol 206:358.e1–9CrossRefGoogle Scholar
  27. 27.
    Girard S, Larouche A, Kadhim H, Rola-Pleszczynski M, Gobeil F, Sebire G (2008) Lipopolysaccharide and hypoxia/ischemia induced IL-2 expression by microglia in neonatal brain. Neuroreport 19:997–1002CrossRefPubMedGoogle Scholar
  28. 28.
    Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141CrossRefPubMedGoogle Scholar
  29. 29.
    Larouche A, Roy M, Kadhim H, Tsanaclis AM, Fortin D, Sebire G (2005) Neuronal injuries induced by perinatal hypoxic-ischemic insults are potentiated by prenatal exposure to lipopolysaccharide: animal model for perinatally acquired encephalopathy. Dev Neurosci 27:134–142CrossRefPubMedGoogle Scholar
  30. 30.
    Savard A, Lavoie K, Brochu ME et al (2013) Involvement of neuronal IL-1beta in acquired brain lesions in a rat model of neonatal encephalopathy. J Neuroinflammation 10:110PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Julie Bergeron
    • 1
  • Marie-Julie Allard
    • 1
  • Clémence Guiraut
    • 1
  • Mathilde Chevin
    • 1
  • Alexandre Savard
    • 1
  • Djordje Grbic
    • 1
  • Marie-Elsa Brochu
    • 1
  • Guillaume Sébire
    • 1
    • 2
  1. 1.Pediatric Neurology Laboratory, Département de PédiatrieUniversité de SherbrookeSherbrookeCanada
  2. 2.Child Neurology Division, Department of PediatricsMcGill UniversityMontrealCanada

Personalised recommendations