Animal Models of Cerebral Dysgenesis: Excitotoxic Brain Injury

  • Luigi Titomanlio
  • Leslie Schwendimann
  • Pierre Gressens
Part of the Neuromethods book series (NM, volume 104)


Brain damage through excitotoxic mechanisms is a major cause of pediatric neurologic diseases. These include hypoxic-ischemic encephalopathy, periventricular white matter damage (PWMD), stroke, meningoencephalitis, traumatic brain injury, and neurodegenerative disorders. In the present chapter, we describe the procedure to generate a model of excitotoxic injury by intra-cerebrally injecting glutamate analogues. This model provides tools for investigating excitotoxic influences at various stages of neural development and for identifying protective substances against excitotoxicity.

Key words

Excitotoxicity Cerebral palsy Ibotenate 


  1. 1.
    Allen MC (2008) Neurodevelopmental outcomes of preterm infants. Curr Opin Neurol 21(2):123–128CrossRefPubMedGoogle Scholar
  2. 2.
    Robertson CM, Watt MJ, Yasui Y (2007) Changes in the prevalence of cerebral palsy for children born very prematurely within a population-based program over 30 years. JAMA 297(24):2733–2740CrossRefPubMedGoogle Scholar
  3. 3.
    Vincer MJ, Allen AC, Joseph KS, Stinson DA, Scott H, Wood E (2006) Increasing prevalence of cerebral palsy among very preterm infants: a population-based study. Pediatrics 118(6):e1621–e1626CrossRefPubMedGoogle Scholar
  4. 4.
    Wilson-Costello D, Friedman H, Minich N, Siner B, Taylor G, Schluchter M, Hack M (2007) Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000-2002. Pediatrics 119(1):37–45CrossRefPubMedGoogle Scholar
  5. 5.
    O'Shea M (2008) Cerebral palsy. Semin Perinatol 32(1):35–41CrossRefPubMedGoogle Scholar
  6. 6.
    Johnson AR, DeMatt E, Salorio CF (2009) Predictors of outcome following acquired brain injury in children. Dev Disabil Res Rev 15(2):124–132CrossRefPubMedGoogle Scholar
  7. 7.
    Moritani T, Smoker WR, Sato Y, Numaguchi Y, Westesson PL (2005) Diffusion-weighted imaging of acute excitotoxic brain injury. AJNR Am J Neuroradiol 26(2):216–228PubMedGoogle Scholar
  8. 8.
    Deng W, Pleasure J, Pleasure D (2008) Progress in periventricular leukomalacia. Arch Neurol 65(10):1291–1295PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Johnston MV (2005) Excitotoxicity in perinatal brain injury. Brain Pathol 15(3):234–240CrossRefPubMedGoogle Scholar
  10. 10.
    Volpe JJ (2005) Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics 116(1):221–225CrossRefPubMedGoogle Scholar
  11. 11.
    Inglis WL, Semba K (1997) Discriminable excitotoxic effects of ibotenic acid, AMPA, NMDA and quinolinic acid in the rat laterodorsal tegmental nucleus. Brain Res 755(1):17–27CrossRefPubMedGoogle Scholar
  12. 12.
    Sfaello I, Baud O, Arzimanoglou A, Gressens P (2005) Topiramate prevents excitotoxic damage in the newborn rodent brain. Neurobiol Dis 20(3):837–848CrossRefPubMedGoogle Scholar
  13. 13.
    Destot-Wong KD, Liang K, Gupta SK, Favrais G, Schwendimann L, Pansiot J, Baud O, Spedding M, Lelievre V, Mani S, Gressens P (2009) The AMPA receptor positive allosteric modulator, S18986, is neuroprotective against neonatal excitotoxic and inflammatory brain damage through BDNF synthesis. Neuropharmacology 57(3):277–286CrossRefPubMedGoogle Scholar
  14. 14.
    Marret S, Mukendi R, Gadisseux JF, Gressens P, Evrard P (1995) Effect of ibotenate on brain development: an excitotoxic mouse model of microgyria and posthypoxic-like lesions. J Neuropathol Exp Neurol 54(3):358–370CrossRefPubMedGoogle Scholar
  15. 15.
    Tahraoui SL, Marret S, Bodenant C, Leroux P, Dommergues MA, Evrard P, Gressens P (2001) Central role of microglia in neonatal excitotoxic lesions of the murine periventricular white matter. Brain Pathol 11(1):56–71CrossRefPubMedGoogle Scholar
  16. 16.
    Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50(5):553–562CrossRefPubMedGoogle Scholar
  17. 17.
    Craig A, Ling Luo N, Beardsley DJ, Wingate-Pearse N, Walker DW, Hohimer AR, Back SA (2003) Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp Neurol 181(2):231–240CrossRefPubMedGoogle Scholar
  18. 18.
    Inder TE, Warfield SK, Wang H, Huppi PS, Volpe JJ (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115(2):286–294CrossRefPubMedGoogle Scholar
  19. 19.
    Kesler SR, Vohr B, Schneider KC, Katz KH, Makuch RW, Reiss AL, Ment LR (2006) Increased temporal lobe gyrification in preterm children. Neuropsychologia 44(3):445–453CrossRefPubMedGoogle Scholar
  20. 20.
    Leviton A, Gressens P (2007) Neuronal damage accompanies perinatal white-matter damage. Trends Neurosci 30(9):473–478CrossRefPubMedGoogle Scholar
  21. 21.
    Marlow N, Wolke D, Bracewell MA, Samara M (2005) Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 352(1):9–19CrossRefPubMedGoogle Scholar
  22. 22.
    Husson I, Rangon CM, Lelievre V, Bemelmans AP, Sachs P, Mallet J, Kosofsky BE, Gressens P (2005) BDNF-induced white matter neuroprotection and stage-dependent neuronal survival following a neonatal excitotoxic challenge. Cereb Cortex 15(3):250–261CrossRefPubMedGoogle Scholar
  23. 23.
    Marret S, Gressens P, Evrard P (1996) Arrest of neuronal migration by excitatory amino acids in hamster developing brain. Proc Natl Acad Sci U S A 93(26):15463–15468PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Fontaine RH, Olivier P, Massonneau V, Leroux P, Degos V, Lebon S, El Ghouzzi V, Lelievre V, Gressens P, Baud O (2008) Vulnerability of white matter towards antenatal hypoxia is linked to a species-dependent regulation of glutamate receptor subunits. Proc Natl Acad Sci U S A 105(43):16779–16784PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Redecker C, Hagemann G, Witte OW, Marret S, Evrard P, Gressens P (1998) Long-term evolution of excitotoxic cortical dysgenesis induced in the developing rat brain. Brain Res Dev Brain Res 109(1):109–113CrossRefPubMedGoogle Scholar
  26. 26.
    Rousset CI, Kassem J, Olivier P, Chalon S, Gressens P, Saliba E (2008) Antenatal bacterial endotoxin sensitizes the immature rat brain to postnatal excitotoxic injury. J Neuropathol Exp Neurol 67(10):994–1000CrossRefPubMedGoogle Scholar
  27. 27.
    Sfaello I, Daire JL, Husson I, Kosofsky B, Sebag G, Gressens P (2005) Patterns of excitotoxin-induced brain lesions in the newborn rabbit: a neuropathological and MRI correlation. Dev Neurosci 27(2–4):160–168CrossRefPubMedGoogle Scholar
  28. 28.
    Gressens P, Marret S, Hill JM, Brenneman DE, Gozes I, Fridkin M, Evrard P (1997) Vasoactive intestinal peptide prevents excitotoxic cell death in the murine developing brain. J Clin Invest 100(2):390–397PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Olney JW, Ikonomidou C, Mosinger JL, Frierdich G (1989) MK-801 prevents hypobaric-ischemic neuronal degeneration in infant rat brain. J Neurosci 9(5):1701–1704PubMedGoogle Scholar
  30. 30.
    Sokolowska P, Passemard S, Mok A, Schwendimann L, Gozes I, Gressens P (2010) Neuroprotective effects of NAP against excitotoxic brain damage in the newborn mice: implications for cerebral palsy. Neuroscience 173:156–168CrossRefPubMedGoogle Scholar
  31. 31.
    Medja F, Lelievre V, Fontaine RH, Lebas F, Leroux P, Ouimet T, Saria A, Rougeot C, Dournaud P, Gressens P (2006) Thiorphan, a neutral endopeptidase inhibitor used for diarrhoea, is neuroprotective in newborn mice. Brain 129(Pt 12):3209–3223CrossRefPubMedGoogle Scholar
  32. 32.
    Schroeter M, Saleh A, Wiedermann D, Hoehn M, Jander S (2004) Histochemical detection of ultrasmall superparamagnetic iron oxide (USPIO) contrast medium uptake in experimental brain ischemia. Magn Reson Med 52(2):403–406CrossRefPubMedGoogle Scholar
  33. 33.
    Dousset V, Ballarino L, Delalande C, Coussemacq M, Canioni P, Petry KG, Caille JM (1999) Comparison of ultrasmall particles of iron oxide (USPIO)-enhanced T2-weighted, conventional T2-weighted, and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis. AJNR Am J Neuroradiol 20(2):223–227PubMedGoogle Scholar
  34. 34.
    Alison M, Azoulay R, Chalard F, Gressens P, Sebag G (2010) In vivo assessment of experimental neonatal excitotoxic brain lesion with USPIO-enhanced MR imaging. Eur Radiol 20(9):2204–2212CrossRefPubMedGoogle Scholar
  35. 35.
    Titomanlio L, Bouslama M, Le Verche V, Dalous J, Kaindl A, Tsenkina Y, Lacaud A, Peineau S, Elghouzzi V, Lelievre V, Gressens P (2011) Implanted neurosphere-derived precursors promote recovery after neonatal excitotoxic brain injury. Stem Cells Dev 20(5):865–879CrossRefPubMedGoogle Scholar
  36. 36.
    Bouslama M, Renaud J, Olivier P, Fontaine RH, Matrot B, Gressens P, Gallego J (2007) Melatonin prevents learning disorders in brain-lesioned newborn mice. Neuroscience 150(3):712–719CrossRefPubMedGoogle Scholar
  37. 37.
    Favrais G, Schwendimann L, Gressens P, Lelievre V (2007) Cyclooxygenase-2 mediates the sensitizing effects of systemic IL-1-beta on excitotoxic brain lesions in newborn mice. Neurobiol Dis 25(3):496–505CrossRefPubMedGoogle Scholar
  38. 38.
    Nelson KB, Dambrosia JM, Grether JK, Phillips TM (1998) Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol 44(4):665–675CrossRefPubMedGoogle Scholar
  39. 39.
    Dommergues MA, Patkai J, Renauld JC, Evrard P, Gressens P (2000) Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann Neurol 47(1):54–63CrossRefPubMedGoogle Scholar
  40. 40.
    Yoon BH, Kim CJ, Romero R, Jun JK, Park KH, Choi ST, Chi JG (1997) Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstet Gynecol 177(4):797–802CrossRefPubMedGoogle Scholar
  41. 41.
    Romero R, Avila C, Santhanam U, Sehgal PB (1990) Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest 85(5):1392–1400PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Pang Y, Cai Z, Rhodes PG (2003) Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide. Brain Res Dev Brain Res 140(2):205–214CrossRefPubMedGoogle Scholar
  43. 43.
    Fan LW, Tien LT, Mitchell HJ, Rhodes PG, Cai Z (2008) Alpha-phenyl-n-tert-butyl-nitrone ameliorates hippocampal injury and improves learning and memory in juvenile rats following neonatal exposure to lipopolysaccharide. Eur J Neurosci 27(6):1475–1484CrossRefPubMedGoogle Scholar
  44. 44.
    Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS.J Neurosci 22(7):2478–2486PubMedGoogle Scholar
  45. 45.
    Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG (2000) Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res 47(1):64–72CrossRefPubMedGoogle Scholar
  46. 46.
    Wang X, Rousset CI, Hagberg H, Mallard C (2006) Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med 11(5):343–353CrossRefPubMedGoogle Scholar
  47. 47.
    Rangon CM, Fortes S, Lelievre V, Leroux P, Plaisant F, Joubert C, Lanfumey L, Cohen-Salmon C, Gressens P (2007) Chronic mild stress during gestation worsens neonatal brain lesions in mice. J Neurosci 27(28):7532–7540CrossRefPubMedGoogle Scholar
  48. 48.
    Laudenbach V, Fontaine RH, Medja F, Carmeliet P, Hicklin DJ, Gallego J, Leroux P, Marret S, Gressens P (2007) Neonatal hypoxic preconditioning involves vascular endothelial growth factor. Neurobiol Dis 26(1):243–252CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Luigi Titomanlio
    • 1
    • 2
    • 3
    • 4
  • Leslie Schwendimann
    • 1
    • 2
    • 3
  • Pierre Gressens
    • 1
    • 2
    • 3
    • 5
  1. 1.Inserm, U1141ParisFrance
  2. 2.Univ Paris DiderotSorbonne Paris Cité, UMRS 1141ParisFrance
  3. 3.PremUPParisFrance
  4. 4.AP-HP, Pediatric Emergency DepartmentHôpital Robert DebréParisFrance
  5. 5.Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUK

Personalised recommendations