Skip to main content
Book cover

Cell Fusion pp 237–246Cite as

Photoconvertible Fluorescent Protein-Based Live Imaging of Mitochondrial Fusion

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1313))

Abstract

Mitochondria are highly dynamic organelles that undergo fusion and fission on a relatively fast time scale. Here, a straightforward method is described for capturing mitochondrial fusion events in real time using a photoconvertible fluorescent protein and a far-field fluorescence microscope equipped with appropriate image acquisition and analysis software. The Kaede photoconvertible fluorescent protein is tagged with a mitochondrial targeting sequence and delivered to primary neurons by lentiviral transduction, which ensures efficient low copy number transgene insertion, as well as stable transgene expression.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A 99:12651–12656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C et al (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101:15905–15910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6:233–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV et al (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465

    Article  CAS  PubMed  Google Scholar 

  5. Habuchi S, Tsutsui H, Kochaniak AB, Miyawaki A, van Oijen AM (2008) mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One 3:e3944

    Article  PubMed Central  PubMed  Google Scholar 

  6. McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hoi H, Shaner NC, Davidson MW, Cairo CW, Wang J et al (2010) A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. J Mol Biol 401:776–791

    Article  CAS  PubMed  Google Scholar 

  8. Adam V, Moeyaert B, David CC, Mizuno H, Lelimousin M et al (2011) Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem Biol 18:1241–1251

    Article  CAS  PubMed  Google Scholar 

  9. Nowotschin S, Eakin GS, Hadjantonakis AK (2009) Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives. Trends Biotechnol 27:266–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Baker SM, Buckheit RW III, Falk MM (2010) Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes. BMC Cell Biol 11:15

    Article  PubMed Central  PubMed  Google Scholar 

  11. Pham AH, McCaffery JM, Chan DC (2012) Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics. Genesis 50:833–843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Owens GC, Walcott EC (2012) Extensive fusion of mitochondria in spinal cord motor neurons. PLoS One 7:e38435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Tomura M, Kabashima K (2013) Analysis of cell movement between skin and other anatomical sites in vivo using photoconvertible fluorescent protein “Kaede”-transgenic mice. Methods Mol Biol 961:279–286

    Article  CAS  PubMed  Google Scholar 

  14. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451

    Article  PubMed  Google Scholar 

  15. Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14(Spec No. 2):R283–R289

    Article  CAS  PubMed  Google Scholar 

  16. Yu-Wai-Man P, Griffiths PG, Gorman GS, Lourenco CM, Wright AF et al (2010) Multi-system neurological disease is common in patients with OPA1 mutations. Brain 133:771–786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Edelman DB, Owens GC, Chen S (2011) Neuromodulation and mitochondrial transport: live imaging in hippocampal neurons over long durations. J Vis Exp 52:e2599

    Google Scholar 

  18. Haastert K, Grosskreutz J, Jaeckel M, Laderer C, Bufler J et al (2005) Rat embryonic motoneurons in long-term co-culture with Schwann cells—a system to investigate motoneuron diseases on a cellular level in vitro. J Neurosci Methods 142:275–284

    Article  PubMed  Google Scholar 

  19. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  CAS  PubMed  Google Scholar 

  20. Curran MA, Kaiser SM, Achacoso PL, Nolan GP (2000) Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol Ther 1:31–38

    Article  CAS  PubMed  Google Scholar 

  21. Morris KV, Gilbert J, Wong-Staal F, Gasmi M, Looney DJ (2004) Transduction of cell lines and primary cells by FIV-packaged HIV vectors. Mol Ther 10:181–190

    Article  CAS  PubMed  Google Scholar 

  22. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90:8033–8037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey C. Owens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Owens, G.C., Edelman, D.B. (2015). Photoconvertible Fluorescent Protein-Based Live Imaging of Mitochondrial Fusion. In: Pfannkuche, K. (eds) Cell Fusion. Methods in Molecular Biology, vol 1313. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2703-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2703-6_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2702-9

  • Online ISBN: 978-1-4939-2703-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics