Skip to main content

Spaceflight Exploration in Plant Gravitational Biology

  • Protocol

Part of the Methods in Molecular Biology book series (MIMB,volume 1309)

Abstract

Before there was access to space, all experiments on plant tropisms were conducted upon the background of gravity. The gravity vector could be disrupted, such as with clinorotation and random positioning machines, and by manipulating incident angles of root growth with respect to gravity, such as with Darwin’s plants on slanted plates, but gravity could not be removed from the experimental equation. Access to microgravity through spaceflight has opened new doors to plant research. Here we provide an overview of some of the methodologies of conducting plant research in the unique spaceflight environment.

Key words

  • Microgravity
  • Spaceflight
  • Arabidopsis
  • Plant
  • Gravity sensing

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-2697-8_20
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-2697-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Darwin C, Darwin F (1880) The power of movement in plants. J. Murray, London

    CrossRef  Google Scholar 

  2. Christie JM, Murphy AS (2013) Shoot phototropism in higher plants: new light through old concepts. Am J Bot 100(1):35–46. doi:10.3732/ajb.1200340

    CrossRef  CAS  PubMed  Google Scholar 

  3. Edwards W, Moles A (2009) Re-contemplate an entangled bank: the power of movement in plants revisited. Bot J Linn Soc 160:111–118

    CrossRef  Google Scholar 

  4. Chen R, Rosen E, Masson PH (1999) Gravitropism in higher plants. Plant Physiol 120:343–350

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  5. Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720. doi:10.1146/annurev.arplant.043008.092042

    CrossRef  CAS  PubMed  Google Scholar 

  6. Baldwin KL, Strohm AK, Masson PH (2013) Gravity sensing and signal transduction in vascular plant primary roots. Am J Bot 100(1):126–142. doi:10.3732/ajb.1200318

    CrossRef  CAS  PubMed  Google Scholar 

  7. Hashiguchi Y, Tasaka M, Morita MT (2013) Mechanism of higher plant gravity sensing. Am J Bot 100(1):91–100. doi:10.3732/ajb.1200315

    CrossRef  CAS  PubMed  Google Scholar 

  8. Bastien R, Douady S, Moulia B (2014) A unifying modeling of plant shoot gravitropism with an explicit account of the effects of growth. Front Plant Sci 5:136. doi:10.3389/fpls.2014.00136

    CrossRef  PubMed Central  PubMed  Google Scholar 

  9. Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133(4):1677–1690. doi:10.1104/pp. 103.032169 133/4/1677

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  10. Okada K, Shimura Y (1992) Mutational analysis of root gravitropism and phototropism of Arabidopsis thaliana seedlings. Aust J Plant Physiol 19(4):439–448, http://dx.doi.org/10.1071/PP9920439

    CrossRef  Google Scholar 

  11. Liscum E, Askinosie SK, Leuchtman DL, Morrow J, Willenburg KT, Coats DR (2014) Phototropism: growing towards an understanding of plant movement. Plant Cell 26(1):38–55. doi:10.1105/tpc.113.119727

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  12. Briggs WR (2014) Phototropism: some history, some puzzles, and a look ahead. Plant Physiol 164(1):13–23. doi:10.1104/pp. 113.230573

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gupta A, Singh M, Jones AM, Laxmi A (2012) Hypocotyl directional growth in Arabidopsis: a complex trait. Plant Physiol 159(4):1463–1476. doi:10.1104/pp. 112.195776

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kushwah S, Jones AM, Laxmi A (2011) Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth. Plant Physiol 156(4):1851–1866. doi:10.1104/pp. 111.175794

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  15. Vandenbussche F, Callebert P, Zadnikova P, Benkova E, Van Der Straeten D (2013) Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am J Bot 100(1):215–225. doi:10.3732/ajb.1200264

    CrossRef  CAS  PubMed  Google Scholar 

  16. Miller RL, Ward CH (1966) Algal bioregenerative systems. In: Kammermeyer E (ed) Atmosphere in space cabins and closed environments. Appleton-Century-Croft, New York, NY, pp 186–221

    CrossRef  Google Scholar 

  17. Ward CH, Wilkes SS, Craft HL (1970) Effects of prolonged near weightlessness on growth and gas exchange of photosynthetic plants. Dev Ind Microbiol 11:276–295

    Google Scholar 

  18. Wheeler RM (2010) Plants for human life support in space: from Myers to Mars. Gravit Space Biol 23:25–35

    Google Scholar 

  19. Wyatt SE, Kiss JZ (2013) Plant tropisms: from Darwin to the international space station. Am J Bot 100(1):1–3. doi:10.3732/ajb.1200591

    CrossRef  PubMed  Google Scholar 

  20. Johnson SJ (1968) Biochemical changes in the endosperm of wheat seedlings in the weightless state. Bioscience 18:652–655

    CrossRef  Google Scholar 

  21. Edwards BF (1969) Weightlessness experiments on Biosatellite II. Life Sci Space Res 7:84–92

    CAS  PubMed  Google Scholar 

  22. Lyon CJ (1968) Wheat seedling growth in the absence of gravitational force. Plant Physiol 43(6):1002–1007

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gray SW, Edwards BF (1968) The effect of weightlessness on wheat seedling morphogenesis and histochemistry. Bioscience 18:638–645

    CrossRef  Google Scholar 

  24. Johnson SP, Tibbitts TW (1968) The liminal angle of a plagiogeotropic organ under weightlessness. Bioscience 18:655–662

    CrossRef  CAS  Google Scholar 

  25. Kordyum EL (2014) Plant cell gravisensitivity and adaptation to microgravity. Plant Biol 16:79–90. doi:10.1111/plb.12047

    CrossRef  PubMed  Google Scholar 

  26. Paul A-L, Wheeler RM, Levine HG, Ferl RJ (2013) Fundamental plant biology enabled by the space shuttle. Am J Bot 100(1):226–234. doi:10.3732/ajb.1200338

    CrossRef  PubMed  Google Scholar 

  27. Karoliussen I, Brinckmann E, Kittang A-I (2013) Will plants grow on moon or mars? Curr Biotech 2(3):235–243

    CrossRef  Google Scholar 

  28. Herranz R, Anken R, Boonstra J, Braun M, Christianen PC, de Geest M, Hauslage J, Hilbig R, Hill RJ, Lebert M, Medina FJ, Vagt N, Ullrich O, van Loon JJ, Hemmersbach R (2013) Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13(1):1–17. doi:10.1089/ast.2012.0876

    CrossRef  PubMed Central  PubMed  Google Scholar 

  29. Wolverton C, Kiss JZ (2009) An update on plant space biology. Gravit Space Biol 22:13–20

    Google Scholar 

  30. Ruyters G, Braun M (2014) Plant biology in space: recent accomplishments and recommendations for future research. Plant Biol 16:4–11. doi:10.1111/plb.12127

    CrossRef  PubMed  Google Scholar 

  31. Paul A-L, Popp MP, Gurley WB, Guy CL, Norwood KL, Ferl RJ (2005) Arabidopsis gene expression patterns are altered during spaceflight. Adv Space Res 36(7):1175–1181

    CrossRef  Google Scholar 

  32. Stutte GW, Monje O, Hatfield RD, Paul AL, Ferl RJ, Simone CG (2006) Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta 224(5):1038–1049

    CrossRef  CAS  PubMed  Google Scholar 

  33. Salmi ML, Roux SJ (2008) Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. Planta 229(1):151–159

    CrossRef  CAS  PubMed  Google Scholar 

  34. Shagimardanova EI, Gusev OA, Sychev VN, Levinskikh MA, Sharipova MR, Il’inskaia ON, Bingham G, Sugimoto M (2010) Stress response genes expression analysis of barley Hordeum vulgare under space flight environment. Mol Biol 44(5):831–838

    CrossRef  CAS  Google Scholar 

  35. Paul A-L, Zupanska A, Ostrow DT, Zhang Y, Sun Y, Li J-L, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ (2012) Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 12:40–56

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  36. Paul A-L, Zupanska AK, Schultz ER, Ferl RJ (2013) Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol 13:112. doi:10.1186/1471-2229-13-112, 1471-2229-13-112 [pii]

    CrossRef  PubMed Central  PubMed  Google Scholar 

  37. Correll MJ, Pyle TP, Millar KD, Sun Y, Yao J, Edelmann RE, Kiss JZ (2013) Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238(3):519–533. doi:10.1007/s00425-013-1909-x

    CrossRef  CAS  PubMed  Google Scholar 

  38. Nakashima J, Liao F, Sparks JA, Tang Y, Blancaflor EB (2014) The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. Plant Biol 16:142–150. doi:10.1111/plb.12062

    CrossRef  PubMed  Google Scholar 

  39. Sugimoto M, Oono Y, Gusev O, Matsumoto T, Yazawa T, Levinskikh MA, Sychev VN, Bingham GE, Wheeler R, Hummerick M (2014) Genome-wide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight. BMC Plant Biol 14(1):4, 1471-2229-14-4 [pii]

    CrossRef  PubMed Central  PubMed  Google Scholar 

  40. Kiss JZ, Millar KD, Edelmann RE (2012) Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Planta 236:635–645. doi:10.1007/s00425-012-1633-y

    CrossRef  CAS  PubMed  Google Scholar 

  41. Millar KD, Kumar P, Correll MJ, Mullen JL, Hangarter RP, Edelmann RE, Kiss JZ (2010) A novel phototropic response to red light is revealed in microgravity. New Phytol 186(3):648–656.  doi:10.1111/j.1469-8137.2010.03211.x

    CrossRef  PubMed  Google Scholar 

  42. Moriwaki T, Miyazawa Y, Kobayashi A, Takahashi H (2013) Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). Am J Bot 100(1):25–34. doi:10.3732/ajb.1200419

    CrossRef  CAS  PubMed  Google Scholar 

  43. Miyazawa Y, Takahashi H (2007) How do Arabidopsis roots differentiate hydrotropism from gravitropism? Plant Signal Behav 2(5):388–389

    CrossRef  PubMed Central  PubMed  Google Scholar 

  44. Bushart TJ, Cannon AE, ul Haque A, San Miguel P, Mostajeran K, Clark GB, Porterfield DM, Roux SJ (2013) RNA-seq analysis identifies potential modulators of gravity response in spores of Ceratopteris (Parkeriaceae): evidence for modulation by calcium pumps and apyrase activity. Am J Bot 100(1):161–174. doi:10.3732/ajb.1200292

    CrossRef  CAS  PubMed  Google Scholar 

  45. Salmi ML, ul Haque A, Bushart TJ, Stout SC, Roux SJ, Porterfield DM (2011) Changes in gravity rapidly alter the magnitude and direction of a cellular calcium current. Planta 233(5):911–920. doi:10.1007/s00425-010-1343-2

    CrossRef  CAS  PubMed  Google Scholar 

  46. Toyota M, Gilroy S (2013) Gravitropism and mechanical signaling in plants. Am J Bot 100(1):111–125. doi:10.3732/ajb.1200408

    CrossRef  CAS  PubMed  Google Scholar 

  47. Blancaflor EB (2013) Regulation of plant gravity sensing and signaling by the actin cytoskeleton. Am J Bot 100(1):143–152. doi:10.3732/ajb.1200283

    CrossRef  CAS  PubMed  Google Scholar 

  48. Paul A-L, Amalfitano CE, Ferl RJ (2012) Plant growth strategies are remodeled by spaceflight. BMC Plant Biol 12(1):232. doi:10.1186/1471-2229-12-232

    CrossRef  PubMed Central  PubMed  Google Scholar 

  49. Millar KD, Johnson CM, Edelmann RE, Kiss JZ (2011) An endogenous growth pattern of roots is revealed in seedlings grown in microgravity. Astrobiology 11(8):787–797. doi:10.1089/ast.2011.0699

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kern VD, Schwuchow JM, Reed DW, Nadeau JA, Lucas J, Skripnikov A, Sack FD (2005) Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight. Planta 221(1):149–157

    CrossRef  CAS  PubMed  Google Scholar 

  51. NASA (2014) International Space Station Hardware for Biology and Biotechnology. http://www.nasa.gov/mission_pages/station/research/experiments/facilities_hardware.html#Biology-and-Biotechnology

  52. Levine HG, Sharek JA, Johnson KM, Stryjewski EC, Prima VI, Martynenko OI, Piastuch WC (2003) Growth protocols for etiolated soybeans germinated within BRIC-60 canisters under spaceflight conditions. Adv Space Res 26:311–314

    CrossRef  Google Scholar 

  53. Levine HG, Anderson KF, Krikorian AD (2000) The “gaseous” environment in sealed BRIC-100VC canisters flown on ‘Mir’ with embryogenic daylily cell cultures. Adv Space Res 26(2):307–310

    CrossRef  CAS  PubMed  Google Scholar 

  54. Kern VD, Sack FD (2001) Effects of spaceflight (STS-87) on tropisms and plastid positioning in protonemata of the moss Ceratodon purpureus. Adv Space Res 27(5):941–949

    CrossRef  CAS  PubMed  Google Scholar 

  55. Roberts M, Reed D, Rodriguez J (2005) Passive observatories for experimental microbial systems (POEMS): microbes return to flight. SAE International 2005-01-2984

    Google Scholar 

  56. ESA (2013) European modular cultivation system (EMCS). vol ESA-HSO-COU-013.

    Google Scholar 

  57. Kiss JZ, Aanes G, Schiefloe M, Coelho LH, Millar KD, Edelmann RE (2013) Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System. Adv Space Res 53:818

    CrossRef  Google Scholar 

  58. Mazars C, Briere C, Grat S, Pichereaux C, Rossignol M, Pereda-Loth V, Eche B, Boucheron-Dubuisson E, Le Disquet I, Medina FJ, Graziana A, Carnero-Diaz E (2014) Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station. PLoS One 9(3):e91814. doi:10.1371/journal.pone.0091814

    CrossRef  PubMed Central  PubMed  Google Scholar 

  59. Iversen TH, Fossum KR, Svare H, Johnsson A, Schiller P (2002) Plant growth using EMCS hardware on the ISS. J Gravit Physiol 9(1):P223–P224

    PubMed  Google Scholar 

  60. Kittang AI, Iversen TH, Fossum KR, Mazars C, Carnero-Diaz E, Boucheron-Dubuisson E, Le Disquet I, Legue V, Herranz R, Pereda-Loth V, Medina FJ (2014) Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station. Plant Biol 16(3):528–538. doi:10.1111/plb.12132

    CrossRef  PubMed  Google Scholar 

  61. Sytchev VM, Levinskikh MA, Gostimsky SA, Bingham GE, Podolsky IG (2007) Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station. Acta Astronaut 60:426–432

    CrossRef  Google Scholar 

  62. Ruttley TM, Evans CA, Robinson JA (2009) The importance of the International Space Station for life sciences research: past and future. Gravit Space Biol 22:67–81

    Google Scholar 

  63. Hummerick M, Garland J, Bingham G, Sychev V, Podolsky I (2010) Microbiological analysis of Lada Vegetable Production Units (VPU) to define critical control points and procedures to ensure the safety of space grown vegetables. In: 40th International Conference on Environmental Systems. International Conference on Environmental Systems (ICES). American Institute of Aeronautics and Astronautics. doi:10.2514/6.2010-6255

  64. Massa GD, Newsham G, Hummerick ME, Caro JL, Stutte GW, Morrow RC, Wheeler RM (2013) Preliminary species and media selection for the Veggie space hardware. Gravit Space Res 1:95–106

    Google Scholar 

  65. Beaulieu J, Giguère I, Deslauriers M, Boyle B, MacKay J (2013) Differential gene expression patterns in white spruce newly formed tissue on board the International Space Station. Adv Space Res 52(4):760–772, http://dx.doi.org/10.1016/j.asr.2013.05.004

    CrossRef  CAS  Google Scholar 

  66. Barrett-Lennard EG, Dracup M (1988) A porous agar medium for improving the growth of plants under sterile conditions. Plant Soil 108(2):294–298

    CrossRef  Google Scholar 

  67. Rutherford R, Masson PH (1996) Arabidopsis thaliana sku mutant seedlings show exaggerated surface-dependent alteration in root growth vector. Plant Physiol 111(4):987–998

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  68. Oliva M, Dunand C (2007) Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis. New Phytol 176(1):37–43. doi:10.1111/j.1469-8137.2007.02184.x

    CrossRef  CAS  PubMed  Google Scholar 

  69. Okada K, Shimura Y (1990) Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250(4978):274–276. doi:10.1126/science.250.4978.274

    CrossRef  CAS  PubMed  Google Scholar 

  70. Ferl RJ, Zupanska A, Spinale A, Reed D, Manning-Roach S, Guerra G, Cox DR, Paul A-L (2011) The performance of KSC fixation tubes with RNALater for orbital experiments: a case study in ISS operations for molecular biology. Adv Space Res 48(1):199–206. doi:10.1016/j.asr.2011.03.002

    CrossRef  CAS  Google Scholar 

  71. Honma Y, Nakabayashi I, Tamaoki D, Kasahara H, Ishioka N, Shimazu T, Yamada M, Karahara I, Kamisaka S (2003) Optical microscopy of Arabidopsis seedlings fixed in non-fresh FAA using Kennedy Fixation Tubes. Biol Sci Space 17(4):307–308

    CrossRef  PubMed  Google Scholar 

  72. Paul AL, Daugherty CJ, Bihn EA, Chapman DK, Norwood KL, Ferl RJ (2001) Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in Arabidopsis. Plant Physiol 126(2):613–621

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  73. Paul A-L, Levine HG, McLamb W, Norwood KL, Reed D, Stutte GW, Wells HW, Ferl RJ (2005) Plant molecular biology in the space station era: utilization of KSC fixation tubes with RNAlater. Acta Astronaut 56(6):623–628

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Ferl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Paul, AL., Ferl, R.J. (2015). Spaceflight Exploration in Plant Gravitational Biology. In: Blancaflor, E. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 1309. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2697-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2697-8_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2696-1

  • Online ISBN: 978-1-4939-2697-8

  • eBook Packages: Springer Protocols