Skip to main content

Flowering Shoots of Ornamental Crops as a Model to Study Cellular and Molecular Aspects of Plant Gravitropism

  • Protocol
Plant Gravitropism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1309))

Abstract

Flowering shoots offer a very convenient and excellent model system for in-depth study of shoot gravitropism in regular stems rather than in special aboveground organs, showing how plants cope with the force of gravity on Earth and change in orientation. Regarding the emerging notion that roots and shoots execute their gravitropic bending by different mechanisms, the use of flowering shoots offers additional confirmation for the suggested shoot-sensing mechanisms initially found in Arabidopsis. As a part of confirming this mechanism, studying this unique model system also enabled elucidation of the sequence of events operating in gravity signalling in shoots. Hence, using the system of flowering shoots provided an additional dimension to our understanding of shoot gravitropism and its hormonal regulation, which has been less advanced than root gravitropism. This is particularly important since the term “shoots” includes various aboveground organs. Hence, unlike other aboveground organs such as pulvini, the asymmetric growth in response to change in shoot orientation is accompanied in cut ornamental spikes by a continuous growth process. This chapter provides an overview of the basic methods, specifically developed or adapted from other graviresponding systems, for determining the main components which play a key role in gravistimulation signalling in flowering shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133:1677–1690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720

    Article  CAS  PubMed  Google Scholar 

  3. Fukaki H, Fujisawa H, Tasaka M (1996) Gravitropic response of inflorescence stems in Arabidopsis thaliana. Plant Physiol 110:933–943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Fukaki H, Wysocka-Diller J, Kato T et al (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14:425–430

    Article  CAS  PubMed  Google Scholar 

  5. Yano D, Sato M, Saito C et al (2003) A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci USA 100:8586–8594

    Article  Google Scholar 

  6. Meicenheimer RD, Nackid TA (1994) Gravitropic response of kalanchoë stems. Int J Plant Sci 155:395–404

    Article  Google Scholar 

  7. Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Rorabaugh PA, Salisbury FB (1989) Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls. Plant Physiol 91:1329–1338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Woltering EJ (1991) Regulation of ethylene biosynthesis in gravistimulated Kniphofia (hybrid) flower stalks. J Plant Physiol 138:443–449

    Article  CAS  Google Scholar 

  10. Woltering EJ, Somhorst D, Beekhuizen JG et al (1991) Ethylene biosynthesis, carbohydrate metabolism and phenylalanine ammonia-lyase activity in gravireacting Kniphofia flower stalks. Acta Hort 298:99–109

    Google Scholar 

  11. Philosoph-Hadas S, Meir S, Rosenberger I et al (1995) Control and regulation of the gravitropic response of cut flowering stems during storage and horizontal transport. Acta Hort 405:343–350

    CAS  Google Scholar 

  12. Philosoph-Hadas S, Meir S, Rosenberger I et al (1996) Regulation of the gravitropic response and ethylene biosynthesis in gravistimulated snapdragon spikes by calcium chelators and ethylene inhibitors. Plant Physiol 110:301–310

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Friedman H, Meir S, Rosenberger I et al (1998) Inhibition of the gravitropic response of snapdragon spikes by the calcium-channel blocker lanthanum chloride. Plant Physiol 118:483–492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Clifford PE, Oxlade EL (1989) Ethylene production, georesponse, and extension growth in dandelion peduncles. Can J Bot 67:1927–1929

    Article  CAS  Google Scholar 

  15. Kohji J, Yamamoto R, Masuda Y (1995) Gravitropic response in Eichhornia cressipes (water hyacinth). I. Process of gravitropic bending in the peduncle. J Plant Res 108:387–393

    Article  CAS  PubMed  Google Scholar 

  16. Migliaccio F, Galston AW (1987) On the nature and origin of the calcium asymmetry arising during gravitropic response in etiolated pea epicotyls. Plant Physiol 85:542–547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Migliaccio F, Rayle DL (1989) Effect of asymmetric auxin application on Helianthus hypocotyl curvature. Plant Physiol 91:466–468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Philippar K, Ivashikina N, Ache P et al (2004) Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. Plant J 37:815–827

    Google Scholar 

  19. Kaufman PB, Pharis RP, Reid DM et al (1985) Investigation into the possible regulation of negative gravitropic curvature in intact Avena sativa plants and in isolated stem segments by ethylene and gibberellins. Plant Physiol 65:237–244

    Article  CAS  Google Scholar 

  20. Long JC, Zhao W, Rashotte AM et al (2002) Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells. Plant Physiol 128:591–602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Clark GB, Rafati DS, Bolton RJ et al (2000) Redistribution of annexin in gravistimulated pea plumules. Plant Physiol Biochem 38:937–947

    Article  CAS  PubMed  Google Scholar 

  22. Yamashita M, Tomita-Yokotani K, Nakamura T (2004) Natural history of flowers and gravity. Biol Sci Space 18:52–69

    Article  PubMed  Google Scholar 

  23. Philosoph-Hadas S, Friedman H, Berkovitz-Simantov R et al (1999) Involvement of ethylene biosynthesis and action in regulation of the gravitropic response of cut flowers. In: Kanellis AK, Chang C, Klee H, Bleecker AB, Pech JC, Grierson D (eds) Biology and biotechnology of the plant hormone ethylene II. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 151–156

    Chapter  Google Scholar 

  24. Philosoph-Hadas S, Friedman H, Meir S et al (2001) Gravitropism in cut flower stalks of snapdragon. Adv Space Res 27:921–932

    Article  CAS  PubMed  Google Scholar 

  25. Philosoph-Hadas S, Berkovits-Simantov R, Friedman H et al (2003) Role of ethylene in modulating auxin action during the gravitropic response of cut snapdragon spikes. In: Vendrell M, Klee H, Pech JC, Romojaro F (eds) Biology and biotechnology of the plant hormone ethylene III. IOS Press, Amsterdam, pp 311–312

    Google Scholar 

  26. Friedman H, Meir S, Halevy AH et al (2003) Characterization of the asymmetric growth of gravistimulated snapdragon spikes by stem and cell dimension analyses. Am J Bot 90:849–856

    Article  PubMed  Google Scholar 

  27. Friedman H, Vos JW, Hepler PK et al (2003) The role of actin filaments in the gravitropic response of snapdragon flowering shoots. Planta 216:1034–1042

    CAS  PubMed  Google Scholar 

  28. Friedman H, Zhang Z, Meir S et al (2005) New approaches for postharvest inhibition of undesired gravitropic bending in various snapdragon (Antirrhinum majus L.) cultivars. J Hort Sci Biotechnol 80:433–438

    Google Scholar 

  29. Woltering EJ, Balk PA, Mariska A et al (2005) An auxin-responsive 1-amino-cyclopropane-1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems. Planta 220:403–413

    Article  CAS  PubMed  Google Scholar 

  30. Woltering EJ, Balk PA, Nijenhuis-De Vries MA et al (2005) Regulation and role of differential ethylene biosynthesis in gravistimulated Antirrhinum majus L. cut flower stems. Acta Hort 32:213–218

    Google Scholar 

  31. Zhang Z, Friedman H, Meir S et al (2008) Microtubule reorientation in shoots precedes bending during the gravitropic response of cut snapdragon spikes. J Plant Physiol 165:289–296

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Friedman H, Meir S et al (2011) Actomyosin mediates gravisensing and early transduction events in reoriented cut snapdragon spikes. J Plant Physiol 168:1176–1183

    Article  CAS  PubMed  Google Scholar 

  33. Friedman H, Meir S, Halevy AH et al (2003) Inhibition of the gravitropic bending response of flowering shoots by salicylic acid. Plant Sci 165:905–911

    Article  CAS  PubMed  Google Scholar 

  34. Friedman H, Meir S, Rosenberger I et al (2005) Calcium antagonists inhibit bending and differential ethylene production of gravistimulated Ornithogalum ‘Nova’ cut flower spikes. Postharvest Biol Technol 36:9–20

    Article  CAS  Google Scholar 

  35. Kohji J, Hagimoto H, Masuda Y (1979) Georeaction of the flower stalk in a poppy, Papaver rhoeas L. Plant Cell Physiol 20:375–386

    CAS  Google Scholar 

  36. Kohji J, Hagimoto H, Yamamoto R et al (1981) IAA transport and georeaction in the flower stalk of a poppy, Papaver Rhoeas L. Plant Cell Physiol 23:1329–1336

    Google Scholar 

  37. Halevy AH, Mayak S (1981) Senescence and postharvest physiology of cut flowers - Part 2. Hort Rev 3:59–143

    CAS  Google Scholar 

  38. Nichols K, Kofranek AM (1982) Reversal of ethylene inhibition of tulip stem elongation by silver thiosulphate. Sci Hort 17:71–79

    Article  CAS  Google Scholar 

  39. Clifford PE, Barelay GE (1980) The sedimentation of amyloplasts in living statocytes of the dandelion flower stalk. Plant Cell Environ 3:381–386

    Article  Google Scholar 

  40. Clifford PE, Fensom DS, Munt BI et al (1982) Lateral stress initiates bending responses in dandelion peduncles: a clue to geotropism? Can J Bot 60:2671–2673

    Article  Google Scholar 

  41. Clifford PE, Reid DM, Pharis RP (1983) Endogenous ethylene does not initiate but may modify geobending—a role for ethylene in autotropism. Plant Cell Environ 6:433–436

    Article  CAS  Google Scholar 

  42. Blancaflor EB, Hasenstein KH (1997) The organization of the actin cytoskeleton in vertical and gravi-responding primary roots of maize. Plant Physiol 113:1447–1455

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Blancaflor EB, Hasenstein KH (2000) Methods for detection and identification of F-actin in fixed and permeabilized plant tissues. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions, vol 89, Developments in plant and soil sciences. Kluwer Academic Publishers, The Netherlands, pp 601–618

    Chapter  Google Scholar 

  44. Vitha S, Baluška F, Jasik J et al (2000) Steedman’s wax for F-actin visualization. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions, vol 89, Developments in plant and soil sciences. Kluwer Academic Publishers, The Netherlands, pp 619–636

    Chapter  Google Scholar 

  45. Dyachok J, Yoo C-M, Palanichelvam K et al (2009) Sample preparation for fluorescence imaging of the cytoskeleton in fixed and living plant roots. In: Gavin RH (ed) Cytoskeleton methods and protocols, vol 586, Methods in molecular biology. Humana Press, New York, NY, pp 157–169

    Chapter  Google Scholar 

  46. Philosoph-Hadas S, Friedman H, Meir S (2005) Gravitropic bending and plant hormones. In: Litwack G (ed) Vitamins and hormones, vol 72. Elsevier Academic Press, San Diego, CA, pp 31–78

    Google Scholar 

  47. Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Cohen JD, Bausher MG, Bialek K et al (1987) Comparison of a commercial ELISA assay for indole-3-acetic acid at several stages of purification and analysis by gas chromatography-selected ion monitoring-mass spectrometry using a 13C6-labeled internal standard. Plant Physiol 84:982–986

    Google Scholar 

  49. Cohen JD, Baldi BJ, Slovin JP (1986) 13C6-[benzene ring]-indole-3-acetic acid: a new internal standard for quantitative mass spectral analysis of indole-3-acetic acid in plants. Plant Physiol 80:14–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Cohen JD (1984) Convenient apparatus for generation of small amounts of diazomethane. J Chromatogr 303:193–196

    Article  CAS  Google Scholar 

  51. Barkawi LS, Cohen JD (2010) A method for concurrent diazomethane synthesis and substrate methylation in a 96-sample format. Nat Protoc 5:1619–1626

    Article  CAS  PubMed  Google Scholar 

  52. Chen KH, Miller AN, Patterson GW et al (1988) A rapid simple procedure for purification of indole-3-acetic acid prior to GC-MS analysis. Plant Physiol 86:822–825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Das Gupta M., Aggarwal P., Nath U. (2012) CINCINNATA controls surface curvature in Antirrhinum leaves by direct and simultaneous activation of cytokinin and auxin signalling. EMBL/GenBank/DDBJ databases. http://www.uniprot.org/uniprot/I6WK30

  54. Lizada MCC, Yang SF (1979) A simple and sensitive assay for l-aminocyclopropane-l-carboxylic acid. Anal Biochem 100:140–145

    Article  CAS  PubMed  Google Scholar 

  55. Barkawi LS, Tam YY, Tillman JA et al (2010) A high-throughput method for the quantitative analysis of auxins. Nat Protoc 5:1609–1618

    Article  CAS  PubMed  Google Scholar 

  56. Liu X, Hegeman AD, Gardner G et al (2012) Protocol: high-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods 8:31–48, http://www.plantmethods.com/content/8/1/31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Parker KE, Briggs WR (1990) Transport of indole-3-acetic acid during gravitropism in intact maize coleoptiles. Plant Physiol 94:1763–1769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Jiao XZ, Philosoph-Hadas S, Su LY et al (1986) The conversion of 1-(malonylamino)-cyclopropane-1-carboxylic acid to 1-amino- cyclopropane-1-carboxylic acid in plant tissues. Plant Physiol 81:637–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Contribution No. 700/14 from the Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel. The authors’ work on flowering shoot gravitropism was supported by research grants from BARD (The USA–Israel Binational Agricultural Research and Development Fund) and the Chief Scientist of the Israeli Ministry of Agriculture Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Philosoph-Hadas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Philosoph-Hadas, S., Friedman, H., Meir, S. (2015). Flowering Shoots of Ornamental Crops as a Model to Study Cellular and Molecular Aspects of Plant Gravitropism. In: Blancaflor, E. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 1309. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2697-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2697-8_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2696-1

  • Online ISBN: 978-1-4939-2697-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics