Skip to main content

Expressing and Characterizing Mechanosensitive Channels in Xenopus Oocytes

  • Protocol
Plant Gravitropism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1309))

Abstract

The oocytes of the African clawed frog (Xenopus laevis) comprise one of the most widely used membrane protein expression systems. While frequently used for studies of transporters and ion channels, the application of this system to the study of mechanosensitive ion channels has been overlooked, perhaps due to a relative abundance of native expression systems. Recent advances, however, have illustrated the advantages of the oocyte system for studying plant and bacterial mechanosensitive channels. Here we describe in detail the methods used for heterologous expression and characterization of bacterial and plant mechanosensitive channels in Xenopus oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hilf RJC, Bertozzi C, Zimmermann I et al (2010) Structural basis of open channel block in a prokaryotic pentameric ligand-gated ion channel. Nat Struct Mol Biol 17(11):1330–1337

    Article  CAS  PubMed  Google Scholar 

  2. Schroeder JI (1994) Heterologous expression and functional analysis of higher plant transport proteins in Xenopus oocytes. Methods 6:70–81

    Article  CAS  Google Scholar 

  3. Miller AJ, Zhou JJ (2000) Xenopus oocytes as an expression system for plant transporters. Biochim Biophys Acta 1465:343–358

    Article  CAS  PubMed  Google Scholar 

  4. Maroto R, Raso A, Wood TJ et al (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7(2):179–185

    Article  CAS  PubMed  Google Scholar 

  5. Zwart R, Vijverberg HP (1998) Four pharmacologically distinct subtypes of a4b2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Mol Pharmacol 54:1124–1131

    CAS  PubMed  Google Scholar 

  6. Karim N, Wellendorph P, Absalom N et al (2013) Potency of GABA at human recombinant GABAA receptors expressed in Xenopus oocytes: a mini review. Amino Acids 44:1139–1149

    Article  CAS  PubMed  Google Scholar 

  7. Gurdon JB, Lane CD, Woodland HR et al (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233:177–182

    Article  CAS  PubMed  Google Scholar 

  8. Terhag J, Cavara NA, Hollmann M (2010) Cave Canalem: how endogenous ion channels may interfere with heterologous expression in Xenopus oocytes. Methods 51:66–74

    Article  CAS  PubMed  Google Scholar 

  9. Nutt LK (2012) The Xenopus oocyte: a model for studying the metabolic regulation of cancer cell death. Semin Cell Dev Biol 23:412–418

    Article  CAS  PubMed  Google Scholar 

  10. Englund UH, Gertow J, KÃ¥gedal K et al (2014) A voltage dependent non-inactivating Na+ channel activated during apoptosis in Xenopus oocytes. PLoS One 9(2):e88381

    Article  PubMed Central  PubMed  Google Scholar 

  11. Sommerville J (2010) Using oocyte nuclei for studies on chromatin structure and gene expression. Methods 51:157–164

    Article  CAS  PubMed  Google Scholar 

  12. Stick R, Goldberg MW (2010) Oocytes as an experimental system to analyze the ultrastructure of endogenous and ectopically expressed nuclear envelope components by field-emission scanning electron microscopy. Methods 51:170–176

    Article  CAS  PubMed  Google Scholar 

  13. Brown DD (2004) A tribute to the Xenopus laevis oocyte and egg. J Biol Chem 279(44):45291–45299

    Article  CAS  PubMed  Google Scholar 

  14. Naismith JH, Booth IR (2012) Bacterial mechanosensitive channels—MscS: evolution’s solution to creating sensitivity in function. Annu Rev Biophys 41:157–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kloda A, Petrov E, Meyer GR et al (2008) Mechanosensitive channel of large conductance. Int J Biochem Cell Biol 40:164–169

    Article  CAS  PubMed  Google Scholar 

  16. Patel A, Sharif-Naeini R, Folgering JR et al (2010) Canonical TRP channels and mechanotransduction: from physiology to disease states. Pflugers Arch 460:571–581

    Article  CAS  PubMed  Google Scholar 

  17. Maksaev G, Haswell ES (2011) Expression and characterization of the bacterial mechanosensitive channel MscS in Xenopus laevis oocytes. J Gen Physiol 138(6):641–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Maksaev G, Haswell ES (2012) MscS-like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions. Proc Natl Acad Sci 109:19015–19020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yang XC, Sachs F (1990) Characterization of stretch-activated ion channels in Xenopus oocytes. J Physiol 431:103–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhang Y, Gao F, Popov VL et al (2000) Mechanically gated channel activity in cytoskeleton-deficient plasma membrane blebs and vesicles from Xenopus oocytes. J Physiol 523(1):117–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Yang XC, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    Article  CAS  PubMed  Google Scholar 

  22. Wu G, McBride DW Jr, Hamill OP (1997) Mg2+ block and inward rectification of mechanosensitive channels in Xenopus oocytes. Pflugers Arch 435:572–574

    Article  Google Scholar 

  23. Delpire E, Gagnon KB, Ledford JJ et al (2011) Housing and husbandry of Xenopus laevis affect the quality of oocytes for heterologous expression studies. J Am Assoc Lab Anim Sci 50(1):46–53

    PubMed Central  CAS  PubMed  Google Scholar 

  24. King ML, Messitt TJ, Mowry KL (2005) Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 97:19–33

    Article  CAS  PubMed  Google Scholar 

  25. Sobczak K, Bangel-Ruland N, Leier G et al (2010) Endogenous transport systems in the Xenopus laevis oocyte plasma membrane. Methods 51:183–189

    Article  CAS  PubMed  Google Scholar 

  26. Goldin AL (2006) Expression of ion channels in Xenopus oocytes. In: Clare JJ, Trezise DJ (eds) Expression and analysis of recombinant ion channels. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim

    Google Scholar 

  27. Sigel E, Minier F (2005) The Xenopus oocyte: system for the study of functional expression and modulation of proteins. Mol Nutr Food Res 49:228–234

    Article  CAS  PubMed  Google Scholar 

  28. Soreq H, Seidman S (1992) Xenopus oocyte microinjection: from gene to protein. Methods Enzymol 207:225–265

    Article  CAS  PubMed  Google Scholar 

  29. Papke RL, Smith-Maxwell K (2009) High-throughput electrophysiology with Xenopus oocytes. Comb Chem High Throughput Screen 12(1):38–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Musa-Aziz R, Boron WF, Parker MD (2010) Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes. Methods 51:134–145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Dargan SL, Demuro A, Parker I (2006) Imaging Ca2+ signals in Xenopus oocytes. Methods Mol Biol 322:103–119

    Article  CAS  PubMed  Google Scholar 

  32. Tammaro P, Shimomura K, Proks P (2008) Xenopus oocytes as a heterologous expression system for studying ion channels with the patch-clamp technique. Methods Mol Biol 491:127–139

    Article  CAS  PubMed  Google Scholar 

  33. Stűhmer W (1992) Electrophysiological recordings from Xenopus oocytes. Methods Enzymol 207:317–339

    Google Scholar 

  34. Colman A (1984) Translation of eucaryotic messenger RNA in Xenopus oocytes. In: Hames BD, Higgins SJ (eds) Transcription and translation: a practical approach. IRL Press, Oxford, Chapter 10

    Google Scholar 

  35. Sigma-Aldrich. Product information. http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/c0130pis.pdf. Accessed 05 June 2014

  36. Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–179

    Article  CAS  PubMed  Google Scholar 

  37. Ludewig U, von Wirén N, Frommer WB (2002) Uniport of NH4 + by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem 277(16):13548–13555

    Article  CAS  PubMed  Google Scholar 

  38. Schnorf M, Potrykus I, Neuhaus G (1994) Microinjection technique: routine system for characterization of microcapillaries by bubble pressure measurement. Exp Cell Res 210:260–267

    Article  CAS  PubMed  Google Scholar 

  39. Warner Instrument Corporation. Chloriding silver wire, Rev 9.1.99. http://www.warnerinstrument.com/pdf/whitepapers/chloriding_wire.pdf. Accessed 05 June 2014

  40. Dixit R, Rizzo C, Nasrallah M et al (2001) The Brassica MIP-MOD gene encodes a functional water channel that is expressed in the stigma epidermis. Plant Mol Biol 45:51–62

    Article  CAS  PubMed  Google Scholar 

  41. Warner Instrument Corporation. Salt bridge formation, Rev 9.1.99. http://www.warneronline.com/pdf/whitepapers/agar_bridges.pdf. Accessed 05 June 2014

  42. Ermakov YA, Kamaraju K, Sengupta K et al (2010) Gadolinium ions block mechanosensitive channels by altering the packing and lateral pressure of anionic lipids. Biophys J 98(6):1018–1027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Armstrong CM (1971) Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 58:413–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work on bacterial and plant MSC electrophysiology was supported in part by American Recovery and Reinvestment Act (ARRA) funds through grant number R01GM084211 to Doug Rees, Rob Phillips and E.S.H. from the National Institute of General Medical Sciences, National Institutes of Health, and continues under NIH 2R01GM084211 to D.R., R.P. and E.S.H. and N.S.F. MCB-1253103 to E.S.H. We would also like to acknowledge Daniel Schachtman for initial training in the use of oocytes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth S. Haswell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Maksaev, G., Haswell, E.S. (2015). Expressing and Characterizing Mechanosensitive Channels in Xenopus Oocytes. In: Blancaflor, E. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 1309. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2697-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2697-8_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2696-1

  • Online ISBN: 978-1-4939-2697-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics