Skip to main content

Blotting from PhastGel to Membranes by Ultrasound

  • Protocol
Western Blotting

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1312))

Abstract

Ultrasound based approach for enhanced protein blotting is proposed. Three minutes of ultrasound exposure (1 MHz, 2.5 W/cm2) was sufficient for a clear transfer of proteins from a polyacrylamide gel (PhastGel) to nitrocellulose or Nylon 66 Biotrans membrane. The proteins evaluated were prestained sodium dodecyl sulfate-polyacrylamide standards (18,500–106,000 Da) and 14C-labeled Rainbow protein molecular weight markers (14,300–200,000 Da).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fenster A et al (2013) Three-dimensional ultrasound imaging. In: Zhang S (ed), Handbook of 3D machine vision: optical metrology and imaging, vol 16, CRC Press, p 285

    Google Scholar 

  2. Polat BE et al (2011) Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 152(3):330–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Suzuki R et al (2011) Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles. J Control Release 149(1):36–41

    Article  CAS  PubMed  Google Scholar 

  4. Jia X et al (2010) Using sonochemistry for the fabrication of hollow ZnO microspheres. Ultrason Sonochem 17(2):284–287

    Article  CAS  PubMed  Google Scholar 

  5. Lu Y et al (2012) Research on ultrasonic on-line cleaning system for MBR. New Technol New Proc 1:013

    Google Scholar 

  6. Hodgson WJ, DelGuercio LR (1984) Preliminary experience in liver surgery using the ultrasonic scalpel. Surgery 95(2):230–234

    CAS  PubMed  Google Scholar 

  7. Sanborn MR et al (2011) Safety and efficacy of a novel ultrasonic osteotome device in an ovine model. J Clin Neurosci 18(11):1528–1533

    Article  PubMed  Google Scholar 

  8. Chemat F, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18(4):813–835

    Article  CAS  PubMed  Google Scholar 

  9. Wan CPL et al (2012) Increased accumulation and retention of micellar paclitaxel in drug-sensitive and p-glycoprotein-expressing cell lines following ultrasound exposure. Ultrasound Med Biol 38(5):736–744

    Article  PubMed  Google Scholar 

  10. Suzuki R, Maruyama K (2010) Effective in vitro and in vivo gene delivery by the combination of liposomal bubbles (bubble liposomes) and ultrasound exposure. Methods Mol Biol 605:473–486

    CAS  PubMed  Google Scholar 

  11. Anderson CD et al (2013) Ultrasound directs a transposase system for durable hepatic gene delivery in mice. Ultrasound Med Biol 39(12):2351–2361

    Article  PubMed  Google Scholar 

  12. Song S et al (2011) Explorations of high-intensity therapeutic ultrasound and microbubble-mediated gene delivery in mouse liver. Gene Ther 18(10):1006–1014

    Article  CAS  PubMed  Google Scholar 

  13. Qin P et al (2012) Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability. Ultrasound Med Biol 38(6):1085–1096

    Article  PubMed  Google Scholar 

  14. Schroeder A et al (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162(1):1–16

    Article  CAS  PubMed  Google Scholar 

  15. Giustetto P et al (2013) Release of a paramagnetic magnetic resonance imaging agent from liposomes triggered by low intensity non-focused ultrasound. J Med Imag Health Inform 3(3):356–366

    Article  Google Scholar 

  16. Kost J, Langer R (2012) Responsive polymeric delivery systems. Adv Drug Deliv Rev 64:327–341

    Article  Google Scholar 

  17. Souza J et al (2013) Effect of phonophoresis on skin permeation of commercial anti-inflammatory gels: sodium Diclofenac and Ketoprofen. Ultrasound Med Biol 39(9):1623–1630

    Article  PubMed  Google Scholar 

  18. Kost J et al (2000) Non-invasive blood glucose measurement using ultrasound. Nat Med 6:347–350

    Article  CAS  PubMed  Google Scholar 

  19. Khoo X et al (2012) Formulations for trans-tympanic antibiotic delivery. Biomaterials 34(4):1281–1288

    Article  PubMed Central  PubMed  Google Scholar 

  20. Maryam A, Mark EB (2008) Review: challenges and solutions in topical ocular drug-delivery systems. Exp Rev Clin Pharm 1(1):145–161

    Article  Google Scholar 

  21. Sakuma S et al (2012) Performance of cell-penetrating peptide-linked polymers physically mixed with poorly membrane-permeable molecules on cell membranes. Eur J Pharm Biopharm 81:64–73

    Article  CAS  PubMed  Google Scholar 

  22. Meher JG et al (2012) Buccal drug delivery system and penetration enhancer: a review. Pharm Rev 10(55):113–117

    CAS  Google Scholar 

  23. Nabili M et al (2013) Ultrasound-enhanced delivery of antibiotics and anti-inflammatory drugs into the eye. Ultrasound Med Biol 39(4):638–646

    Article  PubMed Central  PubMed  Google Scholar 

  24. Chisti Y, Moo-Young M (1998) Disruption of microbial cells for intracellular products. Enzyme Microb Technol 8:194–204

    Article  Google Scholar 

  25. Bar R (1998) Ultrasound-enhanced bioprocesses: cholesterol oxidation by Rhodococcus erythropolis. Biotechnol Bioeng 32:655–663

    Article  Google Scholar 

  26. Nyborg WL (1998) Ultrasonic microstreaming and related phenomena. Br J Cancer 45:156–160

    Google Scholar 

  27. Zabaneh M, Bar R (1991) Ultrasound-enhanced bioprocess. II: dehydrogenation of hydrocortisone by Arthrobacter simplex. Biotechnol Bioeng 37:998–1003

    Article  CAS  PubMed  Google Scholar 

  28. Matysik F-M et al (1997) Ultrasound-enhanced anodic stripping voltammetry using perfluorosulfonated ionomer-coated mercury thin-film electrodes. Anal Chem 69(8):1651–1656

    Article  CAS  Google Scholar 

  29. Krasovitski B et al (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci 108(8):3258–3263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ogura M et al (2008) Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 60(10):1218–1223

    Article  CAS  PubMed  Google Scholar 

  31. Mitragotri S, Kost J (2004) Low-frequency sonophoresis: a review. Adv Drug Deliv Rev 56(5):589–601

    Article  CAS  PubMed  Google Scholar 

  32. Park D et al (2014) Sonophoresis in transdermal drug deliveries. Ultrasonics 54(1):56–65

    Article  CAS  PubMed  Google Scholar 

  33. Polat BE et al (2010) Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opin Drug Deliv 7(12):1415–1432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lavon I, Kost J (1998) Mass transport enhancement by ultrasound in non-degradable polymeric controlled release systems. J Control Release 54(1):1–7

    Article  CAS  PubMed  Google Scholar 

  35. Aschkenasy C, Kost J (2005) On-demand release by ultrasound from osmotically swollen hydrophobic matrices. J Control Release 110(1):58–66

    Article  CAS  PubMed  Google Scholar 

  36. Chisti Y (2003) Sonobioreactors: using ultrasound for enhanced microbial productivity. Trends Biotechnol 21:89–93

    Article  CAS  PubMed  Google Scholar 

  37. Kost J et al (1994) Enhanced protein blotting from PhastGel media to membranes by irradiation of low-intensity. Anal Biochem 216:27–32

    Article  CAS  PubMed  Google Scholar 

  38. Kost J (2009) Blotting from PhastGel to membranes by ultrasound. In: Kurien B, Scofield H (eds) Protein blotting and detection, Humana Press. Methods Mol Biol 536:173–179

    Google Scholar 

  39. Aoki K et al (1969) Heat denaturation of bovine serum albumin. I: Analysis by acrylamide-gel electrophoresis (commemoration issue dedicated to professor Rempei Gotoh on the occasion of his retirement). Bull Inst Chem Res Kyoto Univ 47(4):274–282

    CAS  Google Scholar 

  40. Suslick KS (1988) Ultrasound: its chemical, physical, and biological effects. VCH Publishers, New York, NY

    Google Scholar 

  41. Issaq HJ et al (1991) The effect of electric field strength, buffer type and concentration on separation parameters in capillary zone electrophoresis. Chromatographia 32(3–4):155–161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Kost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kost, J., Azagury, A. (2015). Blotting from PhastGel to Membranes by Ultrasound. In: Kurien, B., Scofield, R. (eds) Western Blotting. Methods in Molecular Biology, vol 1312. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2694-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2694-7_25

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2693-0

  • Online ISBN: 978-1-4939-2694-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics