Advertisement

CRISPR pp 77-89 | Cite as

Computational Detection of CRISPR/crRNA Targets

  • Ambarish Biswas
  • Peter C. Fineran
  • Chris M. Brown
Part of the Methods in Molecular Biology book series (MIMB, volume 1311)

Abstract

The CRISPR-Cas systems in bacteria and archaea provide protection by targeting foreign nucleic acids. The sequence of the “spacers” within CRISPR arrays specifically determines the targets in invader genomes. These spacers provide the short specific RNA nucleotide sequences within the guide crRNAs. In addition to complementarity in the spacer–target (protospacer) interaction, short flanking protospacer adjacent motifs (PAMs), or mismatching flanks have a discriminatory role in accurate target detection. Here, we describe a bioinformatic method, called CRISPRTarget, to use the sequence of a CRISPR array (e.g., predicted via CRISPRDetect/CRISPRDirection) to identify the foreign nucleic acids it targets.

Key words

CRISPR-Cas RNAi Protospacer adjacent motifs crRNA Noncoding RNA 

Notes

Acknowledgements

This work was supported by a Rutherford Discovery Fellowship from the Royal Society of NZ to PCF, by a Human Frontier Science Program Grant to Ian Macara, Anne Spang and CMB. AB was a recipient of a University of Otago Postgraduate Scholarship and a Postgraduate Publishing Bursary.

References

  1. 1.
    Richter C, Chang JT, Fineran PC (2012) Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses 4:2291–2311CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Westra ER, Buckling A, Fineran PC (2014) CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol 12:317–326CrossRefPubMedGoogle Scholar
  3. 3.
    Drevet C, Pourcel C (2012) How to identify CRISPRs in sequencing data. Methods Mol Biol 905:15–27PubMedGoogle Scholar
  4. 4.
    Lange SJ, Alkhnbashi OS, Rose D, Will S, Backofen R (2013) CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res 41:8034–8044CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Biswas A, Fineran PC, Brown CM (2014) Accurate computational prediction of the transcribed strand of CRISPR non-coding RNAs. Bioinformatics 30:1805–1813CrossRefPubMedGoogle Scholar
  6. 6.
    Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM (2013) CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol 10:817–827CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Fineran PC, Gerritzen MJ, Suarez-Diez M, Kunne T, Boekhorst J, van Hijum SA, Staals RH, Brouns SJ (2014) Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci U S A 111:E1629–E1638CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Richter C, Dy RL, McKenzie RE, Watson BN, Taylor C, Chang JT, McNeil M, Staals RHJ, Fineran PC (2014) Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res 42(13):8516–8526CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712CrossRefPubMedGoogle Scholar
  10. 10.
    Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Fineran PC, Dy RL (2014) Gene regulation by engineered CRISPR-Cas systems. Curr Opin Microbiol 18:83–89CrossRefPubMedGoogle Scholar
  13. 13.
    Yang L, Mali P, Kim-Kiselak C, Church G (2014) CRISPR-Cas-mediated targeted genome editing in human cells. Methods Mol Biol 1114:245–267CrossRefPubMedGoogle Scholar
  14. 14.
    Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P (2007) CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8:209CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Edgar RC (2007) PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8:18CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Rousseau C, Gonnet M, Le Romancer M, Nicolas J (2009) CRISPI: a CRISPR interactive database. Bioinformatics 25:3317–3318CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Skennerton CT, Imelfort M, Tyson GW (2013) Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res 41:e105CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Rho M, Wu YW, Tang H, Doak TG, Ye Y (2012) Diverse CRISPRs evolving in human microbiomes. PLoS Genet 8:e1002441CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ambarish Biswas
    • 1
  • Peter C. Fineran
    • 2
  • Chris M. Brown
    • 1
  1. 1.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  2. 2.Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations