Skip to main content

Procedures for Generating CRISPR Mutants with Novel Spacers Acquired from Viruses or Plasmids

  • Protocol
CRISPR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1311))

Abstract

CRISPR-Cas systems provide immunity in bacteria and archaea against nucleic acids in the form of viral genomes and plasmids, and influence their coevolution. The first main step of CRISPR-Cas activity is the immune adaptation through spacer(s) acquisition into an active CRISPR locus. This step is also mandatory for the final stage of CRISPR-Cas activity, namely interference. This chapter describes general procedures for studying the CRISPR adaptation step, accomplished by producing bacteriophage-insensitive mutants (BIMs) or plasmid-interfering mutants (PIMs) using various spacer acquisition analyses and experiments. Since each bacterial or archaeal species (and even strain) needs specific conditions to optimize the acquisition process, the protocols described below should be thought of as general guidelines and may not be applicable universally, without modification.

Because Streptococcus thermophilus was used as the model system in the first published study on novel spacer acquisition and in many studies ever since, the protocols in this chapter describe specific conditions, media, and buffers that have been used with this microorganism. Details for other species will be given when possible, but readers should first evaluate the best growth and storage conditions for each bacterium—foreign element pair (named the procedure settings) and bear in mind the specificity and variability of CRISPR-Cas types and subtypes. Also, we suggest to be mindful of the fact that some CRISPR-Cas systems are not “naturally” active in terms of the ability to acquire novel CRISPR spacers, and that some systems may require specific conditions to induce the CRISPR-Cas activity for spacer acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  4. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  CAS  PubMed  Google Scholar 

  5. Makarova KS, Wolf YI, Koonin EV (2013) Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 41:4360–4377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Marchfelder A (2013) Special focus CRISPR-Cas. RNA Biol 10:655–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Koonin EV, Makarova KS (2013) CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 10:679–686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266

    Article  CAS  PubMed  Google Scholar 

  9. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  10. Lange SJ, Alkhnbashi OS, Rose D, Will S, Backofen R (2013) CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res 41:8034–8044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yin S, Jensen MA, Bai J, Debroy C, Barrangou R, Dudley EG (2013) Evolutionary divergence of Shiga toxin-producing Escherichia coli is reflected in CRISPR spacer composition. Appl Environ Microbiol 79:5710–5720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Held NL, Herrera A, Whitaker RJ (2013) Reassortment of CRISPR repeat-spacer loci in Sulfolobus islandicus. Environ Microbiol 15:3065–3076

    CAS  Google Scholar 

  13. Shariat N, Kirchner MK, Sandt CH, Trees E, Barrangou R, Dudley EG (2013) Subtyping of Salmonella enterica serovar Newport outbreak isolates by CRISPR-MVLST and determination of the relationship between CRISPR-MVLST and PFGE results. J Clin Microbiol 51:2328–2336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Cai F, Axen SD, Kerfeld CA (2013) Evidence for the widespread distribution of CRISPR-Cas system in the Phylum Cyanobacteria. RNA Biol 10:687–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Emerson JB, Andrade K, Thomas BC, Norman A, Allen EE, Heidelberg KB, Banfield JF (2013) Virus-host and CRISPR dynamics in archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea 2013:370871

    Article  PubMed Central  PubMed  Google Scholar 

  16. Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD (2013) Rapid evolution of the human gut virome. Proc Natl Acad Sci U S A 110:12450–12455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zhang Q, Rho M, Tang H, Doak TG, Ye Y (2013) CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes. Genome Biol 14:R40

    Article  PubMed Central  PubMed  Google Scholar 

  18. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Savitskaya E, Semenova E, Dedkov V, Metlitskaya A, Severinov K (2013) High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli. RNA Biol 10:716–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chylinskim K, Le Rhunm A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10:726–737

    Article  Google Scholar 

  21. Magadán AH, Dupuis MÈ, Villion M, Moineau S (2012) Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system. PLoS One 7:e40913

    Article  PubMed Central  PubMed  Google Scholar 

  22. Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM (2013) CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol 10:817–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shah SA, Erdmann S, Mojica FJ, Garrett RA (2013) Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 10:891–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Peng W, Li H, Hallstrøm S, Peng N, Liang YX, She Q (2013) Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus. RNA Biol 10:738–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Almendros C, Guzmán NM, Díez-Villaseñor C, García-Martínez J, Mojica FJ (2012) Target motifs affecting natural immunity by a constitutive CRISPR-Cas system in Escherichia coli. PLoS One 8:e50797

    Article  Google Scholar 

  26. Sun CL, Barrangou R, Thomas BC, Horvath P, Fremaux C, Banfield JF (2013) Phage mutations in response to CRISPR diversification in a bacterial population. Environ Microbiol 15:463–470

    Article  CAS  PubMed  Google Scholar 

  27. Fischer S, Maier LK, Stoll B, Brendel J, Fischer E, Pfeiffer F, Dyall-Smith M, Marchfelder A (2012) An archaeal immune system can detect multiple protospacer adjacent motifs (PAMs) to target invader DNA. J Biol Chem 287:33351–33363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Swarts DC, Mosterd C, van Passel MW, Brouns SJ (2012) CRISPR interference directs strand specific spacer acquisition. PLoS One 7:e35888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  30. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  CAS  PubMed  Google Scholar 

  34. Horvath P, Barrangou R (2013) RNA-guided genome editing à la carte. Cell Res 23:733–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10:741–743

    Article  CAS  PubMed  Google Scholar 

  37. Horvath P, Romero DA, Coûté-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190:1401–1412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Levin BR, Moineau S, Bushman M, Barrangou R (2013) The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLoS One Genet 9:e1003312

    Article  CAS  Google Scholar 

  40. Lillehaug D (1997) An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages. J Appl Microbiol 83:85–90

    Article  CAS  PubMed  Google Scholar 

  41. Paez-Espino D, Morovic W, Sun CL, Thomas BC, Ueda K, Stahl B, Barrangou R, Banfield JF (2013) Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nat Commun 4:1430

    Article  PubMed  Google Scholar 

  42. Mills S, Griffin C, Coffey A, Meijer WC, Hafkamp B, Ross RP (2010) CRISPR analysis of bacteriophage-insensitive mutants (BIMs) of industrial Streptococcus thermophilus—implications for starter design. J Appl Microbiol 108:945–955

    Article  CAS  PubMed  Google Scholar 

  43. Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945

    Article  PubMed  Google Scholar 

  44. Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nat Acids Res 40:5569–5576

    Article  CAS  Google Scholar 

  45. Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M, Wanner BL, Severinov K (2010) Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol 77:1367–1379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Pul U, Wurm R, Arslan Z, Geissen R, Hofmann N, Wagner R (2010) Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 75:1495–1512

    Article  CAS  PubMed  Google Scholar 

  47. Medina-Aparicio L, Rebollar-Flores JE, Gallego-Hernández AL, Vázquez A, Olvera L, Gutiérrez-Ríos RM, Calva E, Hernández-Lucas I (2011) The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory protein in Salmonella enterica serovar Typhi. J Bacteriol 193:2396–2407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Dupuis MÈ, Villion M, Magadán AH, Moineau S (2013) CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat Commun 4:2087

    Article  PubMed  Google Scholar 

  49. Garneau J (2009) Caractérisation du système CRISPR-cas chez Streptococcus thermophilus. Master thesis, University Laval, Quebec, 109 p. http://ariane2.bibl.ulaval.ca/ariane/?wicket:interface=:8::::

  50. Dupuis MÈ (2011) Caractérisation du mode d’action du système CRISPR1/Cas de Streptococcus thermophilus. Master thesis, University Laval, Quebec, 113 p. http://ariane2.bibl.ulaval.ca/ariane/?wicket:interface=:5::::

  51. van der Ploeg JR (2009) Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. Microbiology 155:1966–1976

    Article  PubMed  Google Scholar 

  52. Cady KC, Bondy-Denomy J, Heussler GE, Davidson AR, O’Toole GA (2012) The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J Bacteriol 194(5728):5738

    Google Scholar 

  53. Erdmann S, Garrett RA (2012) Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms. Mol Microbiol 85:1044–1056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Lopez-Sanchez MJ, Sauvage E, Da Cunha V, Clermont D, Ratsima Hariniaina E, Gonzalez-Zorn B, Poyart C, Rosinski-Chupin I, Glaser P (2013) The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome. Mol Microbiol 85:1057–1071

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Moineau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dupuis, MÈ., Barrangou, R., Moineau, S. (2015). Procedures for Generating CRISPR Mutants with Novel Spacers Acquired from Viruses or Plasmids. In: Lundgren, M., Charpentier, E., Fineran, P. (eds) CRISPR. Methods in Molecular Biology, vol 1311. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2687-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2687-9_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2686-2

  • Online ISBN: 978-1-4939-2687-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics