In Vitro Protocols for Measuring the Antioxidant Capacity of Algal Extracts

Part of the Methods in Molecular Biology book series (MIMB, volume 1308)

Abstract

In the last decade a large amount of research has been directed at targeting algal resources for biologically active molecules. High-throughput in vitro antioxidant assays are routinely used to screen for biologically active compounds present in algal extracts when the requirement is to identify samples for progression to more detailed biological scrutiny. Whilst a myriad of antioxidant assays have been developed, this present chapter aims to give step-by-step practical guidance on how to carry out some of the most popular and biologically relevant assays at the bench.

Key words

Algal extracts Antioxidants Fluorescence assays Preventative oxidation assays Radical scavenging assays Redox assays 

References

  1. 1.
    Blunt JW, Copp BR, Keyzers RA et al (2013) Algal natural products. Nat Prod Rep 30:237–323PubMedCrossRefGoogle Scholar
  2. 2.
    Sasso S, Pohnert G, Lohr M et al (2012) Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol Rev 36:761–785PubMedCrossRefGoogle Scholar
  3. 3.
    Harnedy PA, FitzGerald RJ (2012) Bioactive peptides from algal processing waste and shellfish: a review. J Funct Foods 4:6–24CrossRefGoogle Scholar
  4. 4.
    Wijesinghe W, Jeon YJ (2012) Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia 83:6–12PubMedCrossRefGoogle Scholar
  5. 5.
    Konaté K, Hilou A, Mavoungou JF et al (2012) Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against cotrimoxazol-resistant bacteria strains. Ann Clin Microbiol Antimicrob 11:5PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Ghiringhelli F, Rebe C, Hichami A et al (2012) Immunomodulation and anti-inflammatory roles of polyphenols as anticancer agents. Anticancer Agents Med Chem 12:852–873PubMedCrossRefGoogle Scholar
  7. 7.
    Alu'datt MH, Ereifej K, Abu-Zaiton A et al (2012) Anti-oxidant, anti-diabetic, and anti-hypertensive effects of extracted phenolics and hydrolyzed peptides from barley protein fractions. Int J Food Prop 15:781–795CrossRefGoogle Scholar
  8. 8.
    Carocho M, Ferreira IC (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25PubMedCrossRefGoogle Scholar
  9. 9.
    Dangles O (2012) Antioxidant activity of plant phenols: chemical mechanisms and biological significance. Curr Org Chem 16:692–714CrossRefGoogle Scholar
  10. 10.
    Patras A, Yuan YV, Costa HS et al (2013) Antioxidant activity of phytochemicals. In: Tiwari BK, Brunton NP, Brennan CS (eds) Handbook of plant food phytochemicals: sources, stability and extraction. Wiley, Oxford, pp 452–472CrossRefGoogle Scholar
  11. 11.
    Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856PubMedCrossRefGoogle Scholar
  12. 12.
    Schaich KM (2006) Developing a rational basis for selection of antioxidant screening and testing methods. Acta Hort (ISHS) 709:79–94Google Scholar
  13. 13.
    Ghiselli A, Serafini M, Maiani G et al (1995) A fluorescence-based method for measuring total plasma antioxidant capability. Free Radic Biol Med 18:29–36PubMedCrossRefGoogle Scholar
  14. 14.
    Ruiz-Larrea MB, Leal AM, Liza M et al (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 59:383–388PubMedCrossRefGoogle Scholar
  15. 15.
    Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 26:1199–1200CrossRefGoogle Scholar
  16. 16.
    Molyneux P (2003) The use of stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. J Sci Technol 26:211–219Google Scholar
  17. 17.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant. LWT Food Sci Technol 28:25–30CrossRefGoogle Scholar
  18. 18.
    Papariello GJ, Janish MAM (1966) Diphenyl-picrylhydrazyl as an organic analytical reagent in the spectrophotometric analysis of phenols. Anal Chem 38:211–214CrossRefGoogle Scholar
  19. 19.
    Prior RL, Wu X, Schaich K (2005) Standardised methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302PubMedCrossRefGoogle Scholar
  20. 20.
    MacDonald-Wicks LK, Wood LG, Garg ML (2006) Methodology for the determination of biological antioxidant capacity in vitro: a review. J Sci Food Agric 86:2046–2056CrossRefGoogle Scholar
  21. 21.
    Goupy P, Hugues M, Boivin P et al (1999) Antioxidant composition and activity of barely (Hordem vulgare) and malt extracts and of isolated phenolic compounds. J Sci Food Agric 79:1625–1634CrossRefGoogle Scholar
  22. 22.
    Miller NJ, Diplock AT, Rice-Evans C et al (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412PubMedGoogle Scholar
  23. 23.
    Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolourisation assay. Free Radic Biol Med 26:1231–1237PubMedCrossRefGoogle Scholar
  24. 24.
    Lemanska K, Szymusiak H, Tyrakowska B et al (2001) The influence of pH on the antioxidant properties and the mechanisms of antioxidant action of hydroxyflavones. Free Radic Biol Med 31:869–881PubMedCrossRefGoogle Scholar
  25. 25.
    Fogliano V, Verde V, Randazzo G et al (1999) Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J Agric Food Chem 47:1035–1040PubMedCrossRefGoogle Scholar
  26. 26.
    Mehdi MM, Rizvi SI (2013) N,N-dimethyl-p-phenylenediamine dihydrochlorite-based method for the measurement of plasma oxidative capacity during human aging. Anal Biochem 436:165–167PubMedCrossRefGoogle Scholar
  27. 27.
    Ching TL, de Jong J, Bast A (1994) A method for screening hypochlorous acid scavengers by inhibition of the oxidation of 5-thio-2-nitrobenzoic acid: application to anti-asthmatic drugs. Anal Biochem 218:377–381PubMedCrossRefGoogle Scholar
  28. 28.
    Winterbourn CC (1985) Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride and similarity of the oxidant to hypochlorite. Biochim Biophys Acta 840:204–210PubMedCrossRefGoogle Scholar
  29. 29.
    Pullar JM, Winterbourn CC, Vissers MC (1999) Loss of GSH and thiol enzymes in endothelial cells exposed to sublethal concentrations of hypochlorous acid. Am J Physiol 277:1505–1512Google Scholar
  30. 30.
    Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophi phagosome; oxidants, myeloperoxidase and bacterial killing. Blood 92:3007–3017PubMedGoogle Scholar
  31. 31.
    Aune TM, Thomas EL (1977) Accumulation of hypothiocyanite ion during peroxidise-catalyzed oxidation of thiocyanate ion. Eur J Biochem 80:209–214PubMedCrossRefGoogle Scholar
  32. 32.
    Fernandes E, Toste SA, Lima JLFC et al (2003) The metabolism of sulindac enhances its scavenging activity against reactive oxygen and nitrogen species. Free Radic Biol Med 35:1008–1017PubMedCrossRefGoogle Scholar
  33. 33.
    Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measurement of “antioxidant power”: the FRAP assay. Anal Biochem 47:633–636Google Scholar
  34. 34.
    Stratil P, Klejdus B, Kuban V (2006) Determination of total content of phenolic compounds and their antioxidant activity in vegetables – evaluation of spectrophotometric methods. J Agric Food Chem 54:607–616PubMedCrossRefGoogle Scholar
  35. 35.
    Folin O (1927) Tyrosine and tryptophan determinations in proteins. J Biol Chem 73:672Google Scholar
  36. 36.
    Singelton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  37. 37.
    Singh S, Singh RP (2008) In vitro methods of assay of antioxidants: an overview. Food Rev Int 24:392–415CrossRefGoogle Scholar
  38. 38.
    Box JD (1983) Investigation of the Folin-Ciocalteu phenol reagent for the determination of polyphenolic substances in natural water. Water Res 17:511–525CrossRefGoogle Scholar
  39. 39.
    Peterson GL (1979) Review of the Folin phenol protein quantitation method of Lowery, Rosebrough, Farr and Randall. Anal Biochem 18:201–220CrossRefGoogle Scholar
  40. 40.
    Apak R, Guclu K, Ozyurek M et al (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using the cupric iron reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52:2970–2981CrossRefGoogle Scholar
  41. 41.
    Apak R, Guclu K, Ozyurek M et al (2005) Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free Radic Res 39:949–961PubMedCrossRefGoogle Scholar
  42. 42.
    Karadag A, Ozcelik B, Saner S (2009) Review of methods to determine antioxidant capacities. Food Anal Method 2:41–60CrossRefGoogle Scholar
  43. 43.
    Cao GH, Alessio H, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14:303–311PubMedCrossRefGoogle Scholar
  44. 44.
    Glazer AN (1990) Phycoerythin fluorescence-based assay for reactive oxygen species. Methods Enzymol 186:161–168PubMedCrossRefGoogle Scholar
  45. 45.
    Huang D, Ou B, Hampsch-Woodill M et al (2002) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437–4444PubMedCrossRefGoogle Scholar
  46. 46.
    Ou B, Hampsch-Woodill M, Flanagan J et al (2002) Novel fluorometric assay for hydroxyl radical prevention capacity using fluoroscein as the probe. J Agric Food Chem 50:2772–2777PubMedCrossRefGoogle Scholar
  47. 47.
    Macro G (1968) A rapid method for the evaluation of antioxidants. J Am Oil Chem Soc 45:594–598CrossRefGoogle Scholar
  48. 48.
    Koleva II, van Beek TA, Linssen JPH et al (2002) Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal 13:8–17PubMedCrossRefGoogle Scholar
  49. 49.
    Bors W, Michel C, Saran M (1984) Inhibition of the bleaching of the carotenoid crocin a rapid test for the quantifying antioxidant activity. Biochem Biophys Acta 796:312–319CrossRefGoogle Scholar
  50. 50.
    Wagner CD, Clever HL, Peters ED (1947) Evaluation of the ferrous thiocyanate colorimetric method. Anal Chem 19:980–982CrossRefGoogle Scholar
  51. 51.
    Kikuzaki H, Nakatani N (1993) Antioxidant effects of some ginger constituents. J Food Sci 58:1407–1410CrossRefGoogle Scholar
  52. 52.
    Chan HWS, Coxon DT (1987) Autoxidation of unsaturated lipids. Academic, LondonGoogle Scholar
  53. 53.
    van Kuijk FJGM, Thomas DW, Stephens RJ et al (1990) Gas chromatography-mass spectrometry assays for lipid peroxides. Methods Enzymol 186:388–398PubMedCrossRefGoogle Scholar
  54. 54.
    Frankel EN, Neff WE, Weisleder D (1990) Determination of methyl linoleate hydroperoxides by 13C nuclear magnetic resonance spectroscopy. Methods Ezymol 186:380–387CrossRefGoogle Scholar
  55. 55.
    Kolthoff IM, Medalia AI (1951) Determination of organic peroxides by reaction with ferrous ion. Anal Chem 23:595–603CrossRefGoogle Scholar
  56. 56.
    Kohn NJ, Liversedge M (1944) On a new metabolite whose production by brain is inhibited by apomorphine, emetine, ergotamine, epinephrine and menadione. J Pharmacol Exp Ther 82:292–300Google Scholar
  57. 57.
    Bernheim F, Bernheim MLC, Wilbur KM (1947) The reaction between thiobarbituric acid and the oxidation products of certain lipids. J Biol Chem 174:247–264Google Scholar
  58. 58.
    Wilbur KM, Bernheim F, Shapiro OW (1949) The thiobarbituric acid reagent as a test for the oxidation of unsaturated fatty acids by various agents. Arch Biochem 24:305–313PubMedGoogle Scholar
  59. 59.
    Arnao MB (2000) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol 11:419–421CrossRefGoogle Scholar
  60. 60.
    Magalhaes LM, Segundo MA, Reis R et al (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613:1–19PubMedCrossRefGoogle Scholar
  61. 61.
    Stasko A, Brezova V, Biskupic S et al (2007) The potential pitfalls of using 1,1-diphenyl-2-picrylhydrazyl to characterise antioxidants in mixed water solvents. Free Radic Res 41:379–390PubMedCrossRefGoogle Scholar
  62. 62.
    Noruma T, Kikuchi M, Kawakami Y (1997) Proton-donative antioxidant activity of fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH). Biochem Mol Biol Int 42:361–370Google Scholar
  63. 63.
    Gulcin I (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391PubMedCrossRefGoogle Scholar
  64. 64.
    Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/ antioxidant power assay. J Agric Food Chem 48:3396–3402Google Scholar
  65. 65.
    Heckman RA, Espenson JA (1979) Kinetics and mechanism of oxidation of cobalt(II) macrocycles by iodine, bromide and hydrogen peroxide. Inorg Chem 18:38–43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2015

Authors and Affiliations

  • Owen Kenny
    • 1
  • Nigel P. Brunton
    • 2
  • Thomas J. Smyth
    • 3
  1. 1.Department of Food BiosciencesTeagasc Food Research CentreDublinIreland
  2. 2.Department of Agriculture and Food ScienceUCDDublinIreland
  3. 3.Department of Life SciencesInstitute of Technology SligoSligoIreland

Personalised recommendations