Advertisement

Characterization of Alginates by Nuclear Magnetic Resonance (NMR) and Vibrational Spectroscopy (IR, NIR, Raman) in Combination with Chemometrics

  • Henrik Max Jensen
  • Flemming Hofmann Larsen
  • Søren Balling Engelsen
Part of the Methods in Molecular Biology book series (MIMB, volume 1308)

Abstract

This chapter describes three different spectroscopic methods for structural characterization of the commercial important hydrocolloid alginate extracted from brown seaweed. The “golden” reference method for characterization of the alginate structure is 1H liquid-state NMR of depolymerized alginate polymers using a stepwise hydrolysis. Having implemented this method, predictive and rapid non-destructive methods using vibrational spectroscopy and chemometrics can be developed. These methods can predict the M/G-ratio of the intact alginate powder with at least the same precision and accuracy as the reference method in a fraction of the time that is required to measure the alginate using the reference method. The chapter also demonstrates how solid-state 13C CP/MAS NMR can be used to determine the M/G ratio on the intact sample by the use of multivariate chemometrics and how this method shares the characteristics of the solid-state non-destructive IR method rather than its liquid-state counterpart.

Key words

13C CP/MAS NMR spectroscopy Chemometrics 1H NMR spectroscopy Infrared spectroscopy IR Multivariate curve resolution MCR Partial hydrolysis Partial least squares regression PLSR Sodium alginate 

Notes

Acknowledgements

The work has been supported by a grant to Tina Salomonsen for an Industrial Ph.D. and by a grant from the strategic research council to the MicroPAT project under the InSPIRe (Danish Industry-Science Partnership for Innovation and Research in Food Science) consortium. The Faculty of Science and The Ministry of Science and Technology is acknowledged for a grant to the NMR metabolomics infrastructure.

References

  1. 1.
    Aarstad O, Strand BL, Klepp-Andersen LM et al (2013) Analysis of G-block distributions and their impact on gel properties of in vitro epimerized mannuronan. Biomacromolecules 14:3409–3416. doi: 10.1021/bm400658k PubMedCrossRefGoogle Scholar
  2. 2.
    ASTM (2012) Active standard ASTM F2259, p 5Google Scholar
  3. 3.
    Grasdalen H (1983) High-field, H-1-NMR spectroscopy of alginate – sequential structure and linkage conformations. Carbohyd Res 118:255–260. doi: 10.1016/0008-6215(83)88053-7 CrossRefGoogle Scholar
  4. 4.
    Grasdalen H, Larsen B, Smidsrod O (1979) NMR study of the composition and sequence of uronate residues in alginates. Carbohyd Res 68:23–31. doi: 10.1016/s0008-6215(00)84051-3 CrossRefGoogle Scholar
  5. 5.
    Salomonsen T, Jensen HM, Larsen FH et al (2009) The quantitative impact of water suppression on NMR spectra for compositional analysis of alginates. In: Guðjónsdóttir M, Belton P, Webb G (eds) Magnetic resonance in food science. Royal Society of Chemistry, London, pp 12–19. doi: 10.1039/9781847559494-00012
  6. 6.
    Vilen EM, Klinger M, Sandstrom C (2011) Application of diffusion-edited NMR spectroscopy for selective suppression of water signal in the determination of monomer composition in alginates. Magn Reson Chem 49:584–591. doi: 10.1002/mrc.2789 PubMedGoogle Scholar
  7. 7.
    Chhatbar M, Meena R, Prasad K et al (2009) Microwave assisted rapid method for hydrolysis of sodium alginate for M/G ratio determination. Carbohyd Polym 76:650–656. doi: 10.1016/j.carbpol.2008.11.033 CrossRefGoogle Scholar
  8. 8.
    Li LY, Jiang XL, Guan HS et al (2011) Preparation, purification and characterization of alginate oligosaccharides degraded by alginate lyase from Pseudomonas sp. HZJ 216. Carbohyd Res 346:794–800. doi: 10.1016/j.carres.2011.01.023 CrossRefGoogle Scholar
  9. 9.
    Lundqvist LCE, Jam M, Barbeyron T et al (2012) Substrate specificity of the recombinant alginate lyase from the marine bacteria Pseudomonas alginovora. Carbohyd Res 352:44–50. doi: 10.1016/j.carres.2012.02.014 CrossRefGoogle Scholar
  10. 10.
    Grasdalen H, Larsen B, Smidsrod O (1981) C-13-NMR studies of monomeric composition and sequence in alginate. Carbohyd Res 89:179–191. doi: 10.1016/s0008-6215(00)85243-x CrossRefGoogle Scholar
  11. 11.
    Sperger DM, Fu S, Block LH et al (2011) Analysis of composition, molecular weight, and water content variations in sodium alginate using solid-state NMR spectroscopy. J Pharm Sci 100:3441–3452. doi: 10.1002/jps.22559 PubMedCrossRefGoogle Scholar
  12. 12.
    Salomonsen T, Jensen HM, Larsen FH et al (2009) Alginate monomer composition studied by solution- and solid-state NMR – a comparative chemometric study. Food Hydrocolloid 23:1579–1586. doi: 10.1016/j.foodhyd.2008.11.009 CrossRefGoogle Scholar
  13. 13.
    Salomonsen T, Jensen HM, Larsen FH et al (2009) Direct quantification of M/G ratio from 13C CP-MAS NMR spectra of alginate powders by multivariate curve resolution. Carbohyd Res 344:2014–2022. doi: 10.1016/j.carres.2009.06.025 CrossRefGoogle Scholar
  14. 14.
    Salomonsen T, Jensen HM, Stenbaek D et al (2008) Chemometric prediction of alginate monomer composition: a comparative spectroscopic study using IR, Raman, NIR and NMR. Carbohyd Polym 72:730–739. doi: 10.1016/j.carbpol.2007.10.022 CrossRefGoogle Scholar
  15. 15.
    Wold S, Martens H, Wold H (1983) The multivariate calibration-problem in chemistry solved by the PLS method. Lect Notes Math 973:286–293CrossRefGoogle Scholar
  16. 16.
    Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441CrossRefGoogle Scholar
  17. 17.
    Rinnan A, van den Berg F, Engelsen SB (2009) Review of the most common pre-processing techniques for near-infrared spectra. Trend Anal Chem 28:1201–1222. doi: 10.1016/j.trac.2009.07.007 CrossRefGoogle Scholar
  18. 18.
    Nørgaard L, Saudland A, Wagner J et al (2000) Interval partial least squares regression (i PLS): a comparative chemometric study with an example from the near infrared spectroscopy. Appl Spectrosc 54:413–419. doi: 10.1366/0003702001949500
  19. 19.
    Lawton WH, Sylvestre EA (1971) Self modeling curve resolution. Technometrics 13:617–633. doi: 10.2307/1267173 CrossRefGoogle Scholar
  20. 20.
    Engelsen SB, Savorani F, Rasmussen MA (2013) Chemometric exploration of quantitative NMR data. eMagRes 2:267–278. doi: 10.1002/9780470034590.emrstm1304
  21. 21.
    Martens H, Nielsen JP, Engelsen SB (2003) Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Anal Chem 75:394–404. doi: 10.1021/ac020194w

Copyright information

© Springer Science+Business Media, New York 2015

Authors and Affiliations

  • Henrik Max Jensen
    • 1
  • Flemming Hofmann Larsen
    • 2
  • Søren Balling Engelsen
    • 2
  1. 1.DuPont Nutrition & HealthDuPont Nutrition Biosciences ApSBrabandDenmark
  2. 2.Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations