Structure and Function of Macroalgal Natural Products

  • Ryan M. Young
  • Kathryn M. Schoenrock
  • Jacqueline L. von Salm
  • Charles D. Amsler
  • Bill J. Baker
Part of the Methods in Molecular Biology book series (MIMB, volume 1308)


Since the initial discovery of marine phyco-derived secondary metabolites in the 1950s there has been a rapid increase in the description of new algal natural products. These metabolites have multiple ecological roles as well as commercial value as potential drugs or lead compounds. With the emergence of resistance to our current arsenal of drugs as well as the development of new chemotherapies for currently untreatable diseases, new compounds must be sourced. As outlined in this chapter algae produce a diverse range of chemicals many of which have potential for the treatment of human afflictions.

In this chapter we outline the classes of metabolites produced by this chemically rich group of organisms as well as their respective ecological roles in the environment. Algae are found in nearly every environment on earth, with many of these organisms possessing the ability to shape the ecosystem they inhabit. With current challenges to climate stability, understanding how these important organisms interact with their environment as well as one another might afford better insight into how they respond to a changing climate.

Key words

Chemical ecology Macroalgae Natural products Secondary metabolites 



Preparation of this chapter was supported in part by National Science Foundation awards ANT-0838773 and PLR-1341333 (C.D.A.) and awards ANT-0838776 and PLR-1341339 (B.J.B.) from the Antarctic Organisms and Ecosystems Program.


  1. 1.
    Blunt J, Munro MGH (2013) MarinLit. 0813 edn. Christchurch, NZGoogle Scholar
  2. 2.
    Leal MC, Munro MH, Blunt JW et al (2013) Biogeography and biodiscovery hotspots of macroalgal marine natural products. Nat Prod Rep 30:1380–1390. doi: 10.1039/c3np70057g PubMedGoogle Scholar
  3. 3.
    Blunt JW, Copp BR, Keyzers RA et al (2013) Marine natural products. Nat Prod Rep 30:237–323. doi: 10.1039/c2np20112g PubMedGoogle Scholar
  4. 4.
    Stratmann K, Boland W, Müller DG (1992) Pheromones of marine brown algae—a new branch of the eicosanoid metabolism. Angew Chem Int Ed 31:1246–1248Google Scholar
  5. 5.
    Harper MK, Bugni TS, Copp BR et al (2001) Introduction to the chemical ecology of marine natural products. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, FL, pp 3–70Google Scholar
  6. 6.
    Maschek JA, Baker BJ (2009) The chemistry of algal secondary metabolism. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 1–24Google Scholar
  7. 7.
    Fuller RW, Cardellina JH, Kato Y et al (1992) A pentahalogenated monoterpene from the red alga Portieria hornemannii produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines. J Med Chem 35:3007–3011PubMedGoogle Scholar
  8. 8.
    Fuller RW, Cardellina JH, Jurek J et al (1994) Isolation and structure/activity features of halomon-related antitumor monoterpenes from the red alga Portieria hornemannii. J Med Chem 37:4407–4411PubMedGoogle Scholar
  9. 9.
    Sotokawa T, Noda T, Pi S et al (2000) A three-step synthesis of halomon. Angew Chem Int Ed 39:3430–3432Google Scholar
  10. 10.
    Jung ME, Parker MH (1997) Synthesis of several naturally occurring polyhalogenated monoterpenes of the halomon class. J Org Chem 62:7094–7095. doi: 10.1021/Jo971371+ PubMedGoogle Scholar
  11. 11.
    Konig GM, Wright AD (1997) Laurencia rigida: chemical investigations of its antifouling dichloromethane extract. J Nat Prod 60:967–970. doi: 10.1021/Np970181r PubMedGoogle Scholar
  12. 12.
    Juagdan EG, Kalidindi R, Scheuer P (1997) Two new chamigranes from an Hawaiian red alga, Laurencia cartilaginea. Tetrahedron 53:521–528. doi: 10.1016/S0040-4020(96)01002-2 Google Scholar
  13. 13.
    Bansemir A, Just N, Michalik M et al (2004) Extracts and sesquiterpene derivatives from the red alga Laurencia chondrioides with antibacterial activity against fish and human pathogenic bacteria. Chem Biodivers 1:463–467. doi: 10.1002/cbdv.200490039 PubMedGoogle Scholar
  14. 14.
    Sims JJ, Lin GHY, Wing RM (1974) Marine natural products X elatol, a halogenated sesquiterpene alcohol from red alga Laurencia elata. Tetrahedron Lett 15:3487–3490Google Scholar
  15. 15.
    Vairappan CS (2003) Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol Eng 20:255–259. doi: 10.1016/S1389-0344(03)00067-4 PubMedGoogle Scholar
  16. 16.
    Lhullier C, Donnangelo A, Caro M et al (2009) Isolation of elatol from Laurencia microcladia and its palatability to the sea urchin Echinometra lucunter. Biochem System Ecol 37:254–259. doi: 10.1016/j.bse.2009.04.004 Google Scholar
  17. 17.
    de Nys R, Leya T, Maximilien R et al (1996) The need for standardised broad scale bioassay testing: a case study using the red alga Laurencia rigida. Biofouling 10:213–224PubMedGoogle Scholar
  18. 18.
    Steinberg PD, de Nys R, Kjelleberg S (1998) Chemical inhibition of epibiota by Australian seaweeds. Biofouling 12:227–244Google Scholar
  19. 19.
    Viano Y, Bonhomme D, Ortalo-Magné A et al (2011) Dictyotadimer A, a new dissymmetric bis-diterpene from a brown alga of the genus Dictyota. Tetrahedron Lett 52:1031–1035Google Scholar
  20. 20.
    Jiang RW, Lane AL, Mylacraine L et al (2008) Structures and absolute configurations of sulfate-conjugated triterpenoids including an antifungal chemical defense of the green macroalga Tydemania expeditionis. J Nat Prod 71:1616–1619. doi: 10.1021/Np800307h PubMedCentralPubMedGoogle Scholar
  21. 21.
    Kigoshi H, Shizuri Y, Niwa H et al (1981) Laurencenyne, a plausible precursor of various nonterpenoid C15-compounds, and neolaurencenyne from the red alga Laurencia okamurai. Tetrahedron Lett 22:4729–4732Google Scholar
  22. 22.
    Butler A, Carter-Franklin JN (2004) The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep 21:180–188. doi: 10.1039/b302337k PubMedGoogle Scholar
  23. 23.
    Fukuzawa A, Aye M, Nakamura M et al (1990) Biosynthetic formation of cyclic bromo-ethers initiated by lactoperoxidase. Chem Lett 19:1287–1290Google Scholar
  24. 24.
    Murai K (1999) Biosynthesis of cyclic bromoethers from red algae. In: Barton DHR, Meth-Cohn O, Nakanishi K (eds) Comprehensive natural product chemistry, vol. 1. Pergamon, Elmsford, NY, pp 303–324Google Scholar
  25. 25.
    Ciavatta ML, Gavagnin M, Puliti R et al (1997) Dactylallene: a novel dietary C15 bromoallene from the Atlantic Anaspidean mollusc Aplysia dactylomela. Tetrahedron 53:17343–17350Google Scholar
  26. 26.
    Suzuki M, Kurosawa E (1981) Okamurallene, a novel halogenated C15 metabolite from the red alga Laurencia okamurai Yamada. Tetrahedron Lett 22:3853–3856. doi: 10.1016/S0040-4039(01)91327-9 Google Scholar
  27. 27.
    Guella G, Chiasera G, Mancini I et al (1997) Twelve-membered O-bridged cyclic ethers of red seaweeds in the genus Laurencia exist in solution as slowly interconverting conformers. Chem-Eur J 3:1223–1231. doi: 10.1002/chem.19970030809 Google Scholar
  28. 28.
    Howard BM, Fenical W, Arnold EV et al (1979) Obtusin, a unique bromine-containing polycyclic ketal from the red marine alga Laurencia obtusa. Tetrahedron Lett 20:2841–2844Google Scholar
  29. 29.
    Ayyad SE, Al-Footy KO, Alarif WM et al (2011) Bioactive C15 acetogenins from the red alga Laurencia obtusa. Chem Pharm Bull 59:1294–1298PubMedGoogle Scholar
  30. 30.
    Braddock DC (2006) A hypothesis concerning the biosynthesis of the obtusallene family of marine natural products via electrophilic bromination. Org Lett 8:6055–6058. doi: 10.1021/Ol062520q PubMedGoogle Scholar
  31. 31.
    Ginsburg DW, Paul VJ (2001) Chemical defenses in the sea hare Aplysia parvula: importance of diet and sequestration of algal secondary metabolites. Mar Ecol Prog Ser 215:261–274Google Scholar
  32. 32.
    Amsler MO, Amsler CD, von Salm JL et al (2013) Tolerance and sequestration of macroalgal chemical defenses by an Antarctic amphipod: a ‘cheater’ among mutualists. Mar Ecol Prog Ser 490:79–90Google Scholar
  33. 33.
    Stachowicz JJ (2001) Chemical ecology of mobile benthic invertebrates: predators and prey, allies and competitors. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, FL, pp 157–194Google Scholar
  34. 34.
    Müller DG, Jaenicke L, Donike M et al (1971) Sex attractant in a brown alga: chemical structure. Science 171:815–817PubMedGoogle Scholar
  35. 35.
    Boland W, Pohnert G, Maier I (1995) Pericyclic reactions in nature: spontaneous Cope rearrangement inactivates algae pheromones. Angew Chem Int Ed 34:1602–1604Google Scholar
  36. 36.
    Maier I, Pohnert G, Pantke-Böcker S et al (1996) Solid-phase microextraction and determination of the absolute configuration of the Laminaria digitata (Laminariales, Phaeophyceae) spermatozoid-releasing pheromone. Naturwissenschaften 83:378–379Google Scholar
  37. 37.
    Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122PubMedGoogle Scholar
  38. 38.
    Kubanek J, Jensen PR, Keifer PA et al (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci U S A 100:6916–6921. doi: 10.1073/pnas.1131855100 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Yotsu-Yamashita M, Haddock RL, Yasumoto T (1993) Polycavernoside A: a novel glycosidic macrolide from the red alga Polycavernosa tsudai (Gracilaria edulis). J Am Chem Soc 115:1147–1148Google Scholar
  40. 40.
    Yotsu-Yamashita M, Yasumoto T, Yamada S et al (2004) Identification of polycavernoside A as the causative agent of the fatal food poisoning resulting from ingestion of the red alga Gracilaria edulis in the Philippines. Chem Res Toxicol 17:1265–1271. doi: 10.1021/tx0498556 PubMedGoogle Scholar
  41. 41.
    Francavilla M, Franchi M, Monteleone M et al (2013) The red seaweed Gracilaria gracilis as a multi products source. Mar Drugs 11:3754–3776. doi: 10.3390/md11103754 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Burreson BJ, Moore RE, Roller PP (1976) Volatile halogen compounds in the alga Asparagopsis taxiformis (Rhyodophyta). J Agric Food Chem 24:856–861Google Scholar
  43. 43.
    Paul C, Pohnert G (2011) Production and role of volatile halogenated compounds from marine algae. Nat Prod Rep 28:186–195PubMedGoogle Scholar
  44. 44.
    Giese B, Laturnus F, Adams FC et al (1999) Release of volatile iodinated C1-C4 hydrocarbons by marine macroalgae from various climate zones. Environ Sci Technol 33:2432–2439Google Scholar
  45. 45.
    Sugano M, Sato A, Nagaki H et al (1990) Aldose reductase inhibitors from the red alga, Asparagopsis taxiformis. Tetrahedron Lett 31:7015–7016Google Scholar
  46. 46.
    Rasmussen TB, Manefield M, Andersen JB et al (2000) How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146:3237–3244PubMedGoogle Scholar
  47. 47.
    Manefield M, de Nys R, Kumar N et al (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291PubMedGoogle Scholar
  48. 48.
    Lorenzo M, Cueto M, San-Martin A et al (2005) Pyranosylmagellanicus a novel structural class of polyhalogenated acetogenins from Ptilonia magellanica. Tetrahedron 61:9550–9554Google Scholar
  49. 49.
    Higgs MD, Mulheirn LJ (1981) Hybridalactone, an unusual fatty acid metabolite from the red alga Laurencia hybrida (Rhodophyta, Rhodomelaceae). Tetrahedron 37:4259–4262. doi: 10.1016/0040-4020(81)85020-X Google Scholar
  50. 50.
    Nagle DG, Gerwick WH (1994) Structure and stereochemistry of constanolactones A-G, lactonized cyclopropyl oxylipins from the red marine alga Constantinea simplex. J Org Chem 59:7227–7237Google Scholar
  51. 51.
    Corey EJ, De B, Ponder JW et al (1984) The stereochemistry and biosynthesis of hybridalactone, an eicosanoid from Laurencia hybrida. Tetrahedron Lett 25:1015–1018. doi: 10.1016/S0040-4039(01)80088-5 Google Scholar
  52. 52.
    Gerwick WH (1993) Carbocyclic oxylipins of marine origin. Chem Rev 93:1807–1823. doi: 10.1021/Cr00021a008 Google Scholar
  53. 53.
    Jang KH, Lee BH, Choi BW et al (2005) Chromenes from the brown alga Sargassum siliquastrum. J Nat Prod 68:716–723. doi: 10.1021/np058003i PubMedGoogle Scholar
  54. 54.
    Dorta E, Darias J, San MA et al (2002) New prenylated bromoquinols from the green alga Cymopolia barbata. J Nat Prod 65:329–333PubMedGoogle Scholar
  55. 55.
    Zhang H, Xiao X, Conte MM et al (2012) Spiralisones A-D: acylphloroglucinol hemiketals from an Australian marine brown alga, Zonaria spiralis. Org Biomol Chem 10:9671–9676. doi: 10.1039/c2ob26988k PubMedGoogle Scholar
  56. 56.
    Wisespongpand P, Kuniyoshi M (2003) Bioactive phloroglucinols from the brown alga Zonaria diesingiana. J Appl Phycol 15:225–228. doi: 10.1023/A:1023831131735 Google Scholar
  57. 57.
    Francisco C, Banaigs B, Rakba M et al (1986) Cystoseirols: novel rearranged diterpenoids of mixed biogenesis from Cystoseiraceae (brown marine algae). J Org Chem 51:2707–2711Google Scholar
  58. 58.
    Amico V, Cunsolo F, Piattelli M (1984) Balearone, a metabolite of the brown alga Cystoseira balearica. Tetrahedron 40:1721–1725Google Scholar
  59. 59.
    Wessels M, Konig GM, Wright AD (1999) A new tyrosine kinase inhibitor from the marine brown alga Stypopodium zonale. J Nat Prod 62:927–930. doi: 10.1021/np990010h PubMedGoogle Scholar
  60. 60.
    Sieburth JM, Conover JT (1965) Sargassum tannin, an antibiotic which retards fouling. Nature 208:52–53. doi: 10.1038/208052a0 Google Scholar
  61. 61.
    Lau SCK, Qian PY (1997) Phlorotannins and related compounds as larval settlement inhibitors of the tube-building polychaete Hydroides elegans. Mar Ecol Prog Ser 159:219–227. doi: 10.3354/Meps159219 Google Scholar
  62. 62.
    Targett NM, Arnold TM (1998) Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205. doi: 10.1046/j.1529-8817.1998.340195.x Google Scholar
  63. 63.
    Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91. doi: 10.1016/S0065-2296(05)43001-3 Google Scholar
  64. 64.
    Pavia H, Cervin G, Lindgren A et al (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146Google Scholar
  65. 65.
    Geiselman JA, McConnell OJ (1981) Polyphenols in brown algae Fucus vesiculosus and Ascophyllum nodosum: chemical defenses against the marine herbivorous snail, Littorina littorea. J Chem Ecol 7:1115–1147PubMedGoogle Scholar
  66. 66.
    Glombitza KW, Zieprath G (1989) Antibiotics from algae. XXXIX. Phlorotannins from the brown alga Analipus japonicus. Planta Med 55:171–175PubMedGoogle Scholar
  67. 67.
    Fukuyama Y, Miura I, Kinzyo Z et al (1985) Eckols, novel phlorotannins with a dibenzo-p-dioxin skeleton possessing inhibitory effects on α2-macroglobulin from the brown alga Ecklonia kurome Okamura. Chem Lett 14:739–742Google Scholar
  68. 68.
    Glombitza KW, Forstera M, Eckhardt G (1978) Polyhydroxyphenyläther aus der phaeophycee Sargassum muticum. Phytochemistry 17:579–580Google Scholar
  69. 69.
    Glombitza KW, Grosse DJ (1985) Antibiotics from algae. XXXIII. Phlorotannins of the brown alga Himanthalia elongata. Planta Med 51:42–46PubMedGoogle Scholar
  70. 70.
    Glombitza KW, Schmidt A (1999) Nonhalogenated and halogenated phlorotannins from the brown alga Carpophyllum angustifolium. J Nat Prod 62:1238–1240PubMedGoogle Scholar
  71. 71.
    Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. Prog Phycol Res 4:130–241Google Scholar
  72. 72.
    Toth GB, Pavia H (2006) Artificial wounding decreases plant biomass and shoot strength of the brown seaweed Ascophyllum nodosum (Fucales, Phaeophyceae). Mar Biol 148:1193–1199. doi: 10.1007/s00227-005-0167-2 Google Scholar
  73. 73.
    Fairhead VA, Amsler CD, McClintock JB et al (2006) Lack of defense or phlorotannin induction by UV radiation or mesograzers in Desmarestia anceps and D. menziesii (Phaeophyceae). J Phycol 42:1174–1183. doi: 10.1111/j.1529-8817.2006.00283.x Google Scholar
  74. 74.
    Liu M, Hansen PE, Lin X (2011) Bromophenols in marine algae and their bioactivities. Mar Drugs 9:1273–1292. doi: 10.3390/md9071273 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Duan XJ, Li XM, Wang BG (2007) Highly brominated mono- and bis-phenols from the marine red alga Symphyocladia latiuscula with radical-scavenging activity. J Nat Prod 70:1210–1213. doi: 10.1021/np070061b PubMedGoogle Scholar
  76. 76.
    Xu X, Song F, Wang S et al (2004) Dibenzyl bromophenols with diverse dimerization patterns from the brown alga Leathesia nana. J Nat Prod 67:1661–1666. doi: 10.1021/np0400609 PubMedGoogle Scholar
  77. 77.
    Popplewell WL, Northcote PT (2009) Colensolide A: a new nitrogenous bromophenol from the New Zealand marine red alga Osmundaria colensoi. Tetrahedron Lett 50:6814–6817Google Scholar
  78. 78.
    Walsh CT (2008) The chemical versatility of natural product assembly lines. Acc Chem Res 41:4–10. doi: 10.1021/ar7000414 PubMedGoogle Scholar
  79. 79.
    Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262. doi: 10.1146/annurev.physiol.64.081501.155802 PubMedGoogle Scholar
  80. 80.
    Bandaranayake WM (1998) Mycosporines: are they nature’s sunscreens? Nat Prod Rep 15:159–172PubMedGoogle Scholar
  81. 81.
    Karentz D, McEuen FS, Land MC et al (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108:157–166Google Scholar
  82. 82.
    Hamann MT, Otto CS, Scheuer PJ et al (1996) Kahalalides: bioactive peptide from a marine mollusk Elysia rufescens and its algal diet Bryopsis sp. J Org Chem 61:6594–6600. doi: 10.1021/Jo960877+ PubMedGoogle Scholar
  83. 83.
    Hamann MT, Scheuer PJ (1993) Kahalalide F—a bioactive depsipeptide from the sacoglossan mollusk Elysia rufescens and the green alga Bryopsis sp. J Am Chem Soc 115:5825–5826. doi: 10.1021/Ja00066a061 Google Scholar
  84. 84.
    Suarez Y, Gonzalez L, Cuadrado A et al (2003) Kahalalide F, a new marine-derived compound, induces oncosis inhuman prostate and breast cancer cells. Mol Cancer Ther 2:863–872PubMedGoogle Scholar
  85. 85.
    Rademaker-Lakhai JM, Horenblas S, Meinhardt W et al (2005) Phase I clinical and pharmacokinetic study of Kahalalide F in patients with advanced androgen refractory prostate cancer. Clin Cancer Res 11:1854–1862. doi: 10.1158/1078-0432.Ccr-04-1534 PubMedGoogle Scholar
  86. 86.
    Martin-Algarra S, Espinosa E, Rubio J et al (2009) Phase II study of weekly Kahalalide F in patients with advanced malignant melanoma. Eur J Cancer 45:732–735. doi: 10.1016/j.ejca.2008.12.005 PubMedGoogle Scholar
  87. 87.
    Xu WJ, Liao XJ, Xu SH et al (2008) Isolation, structure determination, and synthesis of galaxamide, a rare cytotoxic cyclic pentapeptide from a marine algae Galaxaura filamentosa. Org Lett 10:4569–4672. doi: 10.1021/ol801799d PubMedGoogle Scholar
  88. 88.
    Tan LT, Williamson RT, Gerwick WH et al (2000) cis, cis- and trans, trans-Ceratospongamide, new bioactive cyclic heptapeptides from the Indonesian red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J Org Chem 65:419–425PubMedGoogle Scholar
  89. 89.
    Blunt J, Munro MGH, Laatsch H (2013) AntiMarin. 0213 edn. University of Canterbury & University of Göttingen, Christchurch, NZ; Göttingen, GermanyGoogle Scholar
  90. 90.
    Takahashi S, Matsunaga T, Hasegawa C et al (1998) Martefragin A, a novel indole alkaloid isolated from red alga, inhibits lipid peroxidation. Chem Pharm Bull 46:1527–1529PubMedGoogle Scholar
  91. 91.
    Guella G, Mancini I, N'Diaye I et al (1994) 175. Almazole C, a new indole alkaloid bearing an unusually 2,5-disubstituted oxazole moiety, and its putative biogenetic peptidic precursors, from a Senegalese Delesseriacean seaweed. Helv Chim Acta 77:1999–2006Google Scholar
  92. 92.
    Maeda M, Kodama T, Tanaka T et al (1987) Structures of domoilactone A and B, novel amino acids from the red alga, Chondria armata. Tetrahedron Lett 28:633–636Google Scholar
  93. 93.
    Sato M, Nakano T, Takeuchi M et al (1996) Distribution of neuroexcitatory amino acids in marine algae. Phytochemistry 42:1595–1597Google Scholar
  94. 94.
    Aguilar-Santos G (1970) Caulerpin, a new red pigment from green algae of the genus Caulerpa. J Chem Soc C 6:842–843Google Scholar
  95. 95.
    Liu DQ, Mao SC, Zhang HY et al (2013) Racemosins A and B, two novel bisindole alkaloids from the green alga Caulerpa racemosa. Fitoterapia 91:15–20. doi: 10.1016/j.fitote.2013.08.014 PubMedGoogle Scholar
  96. 96.
    Karentz D (2001) Chemical defenses of marine organisms against solar radiation exposure: UV-absorbing mycosporine-like amino acids and scytonemin. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, FL, pp 481–520Google Scholar
  97. 97.
    Takano S, Nakanishi A, Uemura D et al (1979) Isolation and structure of a 334 nm UV-absorbing substance Porphyra-334 from the red alga Porphyra tenera Kjellman. Chem Lett 26:419–420Google Scholar
  98. 98.
    Tsujino I, Yabe K, Sekikawa I (1980) Isolation and structure of a new amino acid, shinorine, from the red alga Chondrus yendoi Yamada Mikami. Bot Mar 23:65–68Google Scholar
  99. 99.
    Garcia-Pichel F, Wingard CE, Castenholz RW (1993) Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl Environ Microbiol 59:170–176PubMedCentralPubMedGoogle Scholar
  100. 100.
    Conde FR, Churio MS, Previtali CM (2000) The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution. J Photochem Photobiol B-Biol 56:139–144. doi: 10.1016/S1011-1344(00)00066-X Google Scholar
  101. 101.
    Whitehead K, Hedges JI (2005) Photodegradation and photo sensitization of mycosporine-like amino acids. J Photochem Photobiol B-Biol 80:115–121. doi: 10.1016/j.jphotobiol.2005.03.008 Google Scholar
  102. 102.
    Pelletreau KN, Targett NM (2008) New perspectives for addressing patterns of secondary metabolites in marine macroalgae. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 121–146Google Scholar
  103. 103.
    White SJ, Jacobs RS (1983) Effect of stypoldione on cell cycle progression, DNA and protein synthesis, and cell division in cultured sea urchin embryos. Mol Pharmacol 24:500–508PubMedGoogle Scholar
  104. 104.
    O’Brien ET, White S, Jacobs RS et al (1984) Pharmacological properties of a marine natural product, stypoldione, obtained from the brown alga Stypopodium zonale. In: Bird CJ, Ragan MA (eds) Eleventh international seaweed symposium, vol 22, Developments in hydrobiology. Springer, Netherlands, pp 141–145Google Scholar
  105. 105.
    Pereira RC, Soares AR, Teixeira VL et al (2004) Variation in chemical defenses against herbivory in southwestern Atlantic Stypopodium zonale (Phaeophyta). Bot Mar 47:202–208Google Scholar
  106. 106.
    Pavia H, Aberg P, Jacobs RS et al (1996) Spatial variation in polyphenolic content of Ascophyllum nodosum (Fucales, Phaeophyta). In: Lindstrom SC, Chapman DJ (eds) Fifth international seaweed symposium, vol 22, Developments in hydrobiology. Springer, Netherlands, pp 199–203. doi: 10.1007/978-94-009-6560-7 Google Scholar
  107. 107.
    Van Alstyne KL, Puglisi MP (2007) DMSP in marine macroalgae and macroinvertebrates: distribution, function, and ecological impacts. Aquat Sci 69:394–402Google Scholar
  108. 108.
    Paul VJ (1992) Ecological roles of marine natural products. Comstock Publishing Associates, Ithaca, NYGoogle Scholar
  109. 109.
    Pereira RC, da Gama BAP (2008) Macroalgal chemical defenses and their roles in structuring tropical marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 25–55Google Scholar
  110. 110.
    Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monograph 56:345–363Google Scholar
  111. 111.
    Hay ME (1997) The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16:S67–S76Google Scholar
  112. 112.
    Morrison D (1988) Comparing fish and urchin grazing in shallow and deeper coral reef algal communities. Ecology 69:1367–1382Google Scholar
  113. 113.
    Hixon MA, Brostoff WN (1996) Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecol Monograph 66:67–90Google Scholar
  114. 114.
    Littler MM, Taylor PR, Littler DS (1986) Plant defense associations in the marine environment. Coral Reefs 5:63–71Google Scholar
  115. 115.
    Bolser RC, Hay ME (1996) Are tropical plants better defended? Palatability and defenses of temperate vs tropical seaweeds. Ecology 77:2269–2286Google Scholar
  116. 116.
    Jormalainen V, Honkanen T (2008) Macroalgal chemical defenses and their roles in structuring temperate marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 57–89Google Scholar
  117. 117.
    Lobban CS, Harrison PJ (1996) Seaweed ecology and physiology. Cambridge University Press, CambridgeGoogle Scholar
  118. 118.
    Amsler CD, McClintock JB, Baker BJ (2008) Macroalgal chemical defenses in polar marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 91–103Google Scholar
  119. 119.
    Wiencke C, Amsler CD (2012) Seaweeds and their communities in polar regions. In: Wiencke C, Bischof K (eds) Seaweed biology novel insights into ecophysiology, ecology and utilization. Springer-Verlag, Berlin, pp 265–291Google Scholar
  120. 120.
    Fukuhara Y, Mizuta H, Yasui H (2002) Swimming activities of zoospores in Laminaria japonica (Phaeophyceae). Fish Sci 68:1173–1181Google Scholar
  121. 121.
    Lebar MD, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24:774–797. doi: 10.1039/b516240h PubMedGoogle Scholar
  122. 122.
    Wessels H, Hagen W, Molis M et al (2006) Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitsbergen) for two benthic sympatric invertebrates. J Exp Mar Biol Ecol 329:20–33Google Scholar
  123. 123.
    Amsler CD, Amsler MO, McClintock JB et al (2009) Filamentous algal endophytes in macrophytic Antarctic algae: prevalence in hosts and palatability to mesoherbivores. Phycologia 48:324–334. doi: 10.2216/08-79.1 Google Scholar
  124. 124.
    Amsler CD, Iken K, McClintock JB et al (2009) Defenses of polar macroalgae against herbivores and biofoulers. Bot Mar 52:535–545Google Scholar
  125. 125.
    Amsler CD, Iken K, McClintock JB et al (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159Google Scholar
  126. 126.
    Nunez-Pons L, Rodriguez-Arias M, Gomez-Garreta A et al (2012) Feeding deterrency in Antarctic marine organisms: bioassays with the omnivore amphipod Cheirimedon femoratus. Mar Ecol Prog Ser 462:163–174Google Scholar
  127. 127.
    Amsler CD, McClintock JB, Baker BJ (2014) Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. J Phycol 50:1–10. doi: 10.1111/jpy.12137 Google Scholar
  128. 128.
    Karsten U (2008) Defense strategies of algae and cyanobacteria against solar ultraviolet radiation. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 273–296Google Scholar
  129. 129.
    Laturnus F, Wiencke C, Kloser H (1996) Antarctic macroalgae—sources of volatile halogenated organic compounds. Mar Environ Res 41:169–181Google Scholar
  130. 130.
    Laturnus F (2001) Marine macroalgae in polar regions as sources for volatile organohalogens. Environ Sci Pollut Res Int 8:103–108PubMedGoogle Scholar
  131. 131.
    Ankisetty S, Nandiraju S, Win H et al (2004) Chemical investigation of predator-deterred macroalgae from the Antarctic peninsula. J Nat Prod 67:1295–1302. doi: 10.1021/Np049965c PubMedGoogle Scholar
  132. 132.
    Wright JT, de Nys R, Poore A et al (2004) Chemical defense in a marine algae: heritability and the potential for selection by herbivores. Ecology 85:2946–2959Google Scholar
  133. 133.
    Amsler CD, Iken KB (2001) Chemokinesis and chemotaxis in marine bacteria and algae. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, New York, NY, pp 413–430Google Scholar
  134. 134.
    Maier I, Müller DG (1986) Sexual pheromones in algae. Biol Bull 170:145–175Google Scholar
  135. 135.
    Maier I (1995) Brown algal pheromones. Prog Phycol Res 11:51–102Google Scholar
  136. 136.
    Thomas RWSP, Allsopp D (1983) The effects of certain periphytic marine bacteria upon the settlement and growth of Enteromorpha, a fouling alga. In: Oxley TA, Barry S (eds) Biodeterioration. Wiley, New York, pp 348–357Google Scholar
  137. 137.
    Tait K, Joint I, Daykin M et al (2005) Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ Microbiol 7:229–240PubMedGoogle Scholar
  138. 138.
    Joint I, Tait K, Callow ME et al (2002) Cell-to-cell communication across the prokaryote-eukaryote boundary. Science 298:1207PubMedGoogle Scholar
  139. 139.
    Toth GB, Pavia H (2000) Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum). Proc Natl Acad Sci U S A 97:14418–14420PubMedCentralPubMedGoogle Scholar
  140. 140.
    Toth GB, Pavia H (2007) Induced herbivore resistance in seaweeds: a meta-analysis. J Ecol 95:425–434Google Scholar
  141. 141.
    Coleman RA, Ramchunder SJ, Moody AJ et al (2006) An enzyme in snail saliva induces herbivore-resistance in a marine alga. Funct Ecol 21:101–106Google Scholar
  142. 142.
    Rohde S, Molis M, Wahl M (2004) Regulation of anti-herbivore defence by Fucus vesiculosus in response to various cues. J Ecol 92:1011–1018Google Scholar
  143. 143.
    Maier I (1993) Gamete orientation and induction of gametogenesis by pheromones in algae and plants. Plant Cell Environ 16:891–907Google Scholar
  144. 144.
    Sekimoto H (2005) Plant sex pheromones. Vit Horm 72:457–478Google Scholar
  145. 145.
    Amsler CD (2008) Algal sensory chemical ecology. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 297–309Google Scholar
  146. 146.
    Hay ME, Piel J, Boland W et al (1998) Seaweed sex pheromones and their degradation products frequently suppress amphipod feeding but rarely suppress sea urchin feeding. Chemoecology 8:91–98Google Scholar
  147. 147.
    Amsler CD, Neushul M (1989) Chemotactic effects of nutrients on spores of the kelps Macrocystis pyrifera and Pterygophora californica. Mar Biol 102:557–564Google Scholar
  148. 148.
    Amsler CD, Neushul M (1990) Nutrient stimulation of spore settlement in the kelps Pterygophora californica and Macrocystis pyrifera. Mar Biol 107:297–304Google Scholar
  149. 149.
    Greer SP, Iken KB, McClintock JB et al (2003) Individual and coupled effects of echinoderm extracts and surface hydrophobicity on spore settlement and germination in the brown alga Hincksia irregularis. Biofouling 19:315–326PubMedGoogle Scholar
  150. 150.
    Callow ME, Callow JA, Ista LK et al (2000) Use of self-assembled monolayers of different wettabilities to study surface selection and primary adhesion processes of green algal (Enteromorpha) zoospores. Appl Environ Microbiol 66:3249–3254PubMedCentralPubMedGoogle Scholar
  151. 151.
    Greer SP, Amsler CD (2002) Light boundaries and the coupled effects of surface hydrophobicity and light on spore settlement in the brown alga Hincksia irregularis (Phaeophyceae). J Phycol 38:116–124Google Scholar
  152. 152.
    Greer SP, Amsler CD (2004) Clonal variation in phototaxis and settlement behaviors of Hincksia irregularis (Phaeophyceae) spores. J Phycol 40:44–53Google Scholar
  153. 153.
    Finlay JA, Callow ME, Ista LK et al (2002) The influence of surface wettability on the adhesion strength of settled spores of the green alga Enteromorpha and the diatom Amphora. Integr Comp Biol 42:1116–1122PubMedGoogle Scholar
  154. 154.
    Ista LK, Callow ME, Finlay JA et al (2004) Effect of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores. Appl Environ Microbiol 70:4151–4157PubMedCentralPubMedGoogle Scholar
  155. 155.
    Callow ME, Callow JA (1998) Enhanced adhesion and chemoattraction of zoospores of the fouling alga Enteromorpha to some foul-release silicone elastomers. Biofouling 13:157–172Google Scholar
  156. 156.
    Wheeler GL, Tait K, Taylor A et al (2006) Acyl-hormoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Environ 29:608–618PubMedGoogle Scholar
  157. 157.
    Potin P (2012) Intimate associations between epiphytes, endophytes, and parasites of seaweeds. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilization. Springer, New York, pp 203–234Google Scholar
  158. 158.
    Weinberger F, Beltran J, Correa JA et al (2007) Spore release in Acrochaetium sp. (Rhodophyta) is bacterially controlled. J Phycol 43:235–241Google Scholar
  159. 159.
    Kjelleberg S, Steinberg P, Givskov MC et al (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat Microbial Ecol 13:85–93Google Scholar
  160. 160.
    Pavia H, Toth GB (2008) Macroalgal models in testing and extending defense theories. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 147–172Google Scholar
  161. 161.
    Weinberger F (2007) Pathogen-induced defense and innate immunity in macroalgae. Biol Bull 213:290–302PubMedGoogle Scholar
  162. 162.
    Potin P (2008) Oxidative burst and related responses in biotic interactions of algae. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 245–271Google Scholar
  163. 163.
    Küpper FC, Müller DG, Peters AF et al (2002) Oligoalginate recognition and oxidative burst play a key role in natural and induced resistance of sporophytes of Laminariales. J Chem Ecol 28:2057–2081PubMedGoogle Scholar
  164. 164.
    Weinberger F, Friedlander M, Hoppe H-G (1999) Agar oligosaccharides elicit a physiological response in Gracilaria conferta (Rhodophyta). J Phycol 35:747–755Google Scholar
  165. 165.
    McDowell RE, Amsler CD, Dickinson DA et al (2014) Reactive oxygen species and the Antarctic macroalgal wound response. J Phycol 50:71–80Google Scholar
  166. 166.
    Bischof K, Gomez I, Molis M et al (2007) Ultraviolet radiation shapes seaweed communities. In: Amils R, Ellis-Evans C, Hinghofer-Szalkay H (eds) Life in extreme environments. Springer, Netherlands, pp 187–212Google Scholar
  167. 167.
    Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717Google Scholar
  168. 168.
    Hargreaves A, Taiwo FA, Duggan O et al (2007) Near-ultraviolet photolysis of beta-phenylpyruvic acid generates free radicals and results in DNA damage. J Photochem Photobiol B-Biol 89:110–116. doi: 10.1016/j.jphotobiol.2007.09.007 Google Scholar
  169. 169.
    Häder DP, Kumar HD, Smith RC et al (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285. doi: 10.1039/B700020k PubMedGoogle Scholar
  170. 170.
    He YY, Häder DP (2002) Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem Photobiol Sci 1:729–736. doi: 10.1039/B110365m PubMedGoogle Scholar
  171. 171.
    He YY, Häder DP (2002) UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine. J Photochem Photobiol B-Biol 66:115–124. doi: 10.1016/S1011-1344(02)00231-2 Google Scholar
  172. 172.
    He YY, Häder DP (2002) Involvement of reactive oxygen species in the UV-B damage to the cyanobacterium Anabaena sp. J Photochem Photobiol B-Biol 66:73–80. doi: 10.1016/S1011-1344(01)00278-0 Google Scholar
  173. 173.
    Singh SP, Häder DP, Sinha RP (2010) Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res Rev 9:79–90. doi: 10.1016/j.arr.2009.05.004 PubMedGoogle Scholar
  174. 174.
    Case RJ, Longford SR, Campbell AH et al (2011) Temperature induced bacterial virulence and bleaching disease in a chemically defended marine macroalga. Environ Microbiol 13:529–537. doi: 10.1111/j.1462-2920.2010.02356.x PubMedGoogle Scholar
  175. 175.
    Day TA, Neale PJ (2002) Effects of UV-B radiation on terrestrial and aquatic primary producers. Annu Rev Ecol Syst 33:371–396Google Scholar
  176. 176.
    de Nys R, Steinberg PD (1999) Role of secondary metabolites from algae and seagrasses in biofouling control. In: Fingerman M, Nagabhushanam R, Thompson M-F (eds) Recent advances in marine biotechnology, vol. 3. Science Publishers, Enfield, NH, pp 223–244Google Scholar
  177. 177.
    Briand J-F (2009) Marine anti-fouling laboratory bioassays: an overview of their diversity. Biofouling 25:297–311PubMedGoogle Scholar
  178. 178.
    Wahl M, Mark O (1999) The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar Ecol Prog Ser 187:59–66Google Scholar
  179. 179.
    D'Antonio C (1985) Epiphytes on the rocky intertidal alga Rhodomela larix (Turner) C. Agardh: negative effects on the host and food for herbivores. J Exp Mar Biol Ecol 86:197–218Google Scholar
  180. 180.
    Cebrian J, Enriquez S, Fortes M et al (1999) Epiphyte accrual on Posidonia oceanica (L.) Delile leaves: implications for light absorption. Bot Mar 42:123–128Google Scholar
  181. 181.
    Honkanen T, Jormalainen V (2005) Genotypic variation in tolerance and resistance to fouling in the brown alga Fucus vesiculosus. Oecologia 144:196–205PubMedGoogle Scholar
  182. 182.
    Karez R, Engelbert S, Sommer U (2000) ‘Co-consumption’ and ‘protective coating’: two new proposed effects of epiphytes on their macroalgal hosts in mesograzer-epiphyte-host interactions. Mar Ecol Prog Ser 205:85–93Google Scholar
  183. 183.
    Anderson LM, Martone P (1989) Biomechanical consequences of epiphytism in intertidal macroalgae. J Exp Biol 217:1167–1174Google Scholar
  184. 184.
    Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189Google Scholar
  185. 185.
    Steinberg PD, de Nys R (2002) Chemical mediation of colonization of seaweed surfaces. J Phycol 38:621–629Google Scholar
  186. 186.
    Sudatti DB, Rodrigues SV, Pereira RC (2006) Quantitative GC-ECD analysis of halogenated metabolites: determination of surface and within-thallus elatol of Laurencia obtusa. J Chem Ecol 32:835–843PubMedGoogle Scholar
  187. 187.
    Dworjanyn SA, de Nys R, Steinberg PD (2006) Chemically mediated antifouling in the red alga Delisea pulchra. Mar Ecol Prog Ser 318:153–163Google Scholar
  188. 188.
    Nylund GM, Gribben PE, de Nys R et al (2007) Surface chemistry versus whole-cell extracts: antifouling tests with seaweed metabolites. Mar Ecol Prog Ser 329:73–84Google Scholar
  189. 189.
    Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76:107–123Google Scholar
  190. 190.
    Harder T, Dobretsov S, Qian P-Y (2004) Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Mar Ecol Prog Ser 274:133–141Google Scholar
  191. 191.
    Bucolo P, Amsler CD, McClintock JB et al (2012) Effects of macroalgal chemical extracts on spore behavior of the Antarctic epiphyte Elachista antarctica Phaeophyceae. J Phycol 48:1403–1410Google Scholar
  192. 192.
    Lane AL, Kubanek J (2008) Secondary metabolite defenses against pathogens and biofoulers. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 229–243Google Scholar
  193. 193.
    Goecke FR, Labes A, Wiese J et al (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–299Google Scholar
  194. 194.
    Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578PubMedGoogle Scholar
  195. 195.
    Lane AL, Nyadong L, Galhena AS et al (2009) Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc Natl Acad Sci U S A 106:7314–7319PubMedCentralPubMedGoogle Scholar
  196. 196.
    Maximilien R, de Nys R, Holmstrom C et al (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microbial Ecol 15:233–246Google Scholar
  197. 197.
    Steinberg P, de Nys R, Kjellberg S (2002) Chemical cues for surface colonization. J Chem Ecol 28:1935–1951PubMedGoogle Scholar
  198. 198.
    Morse DE, Morse ANC, Raimondi PT et al (1994) Morphogen-based chemical flypaper for Agaricia humilis coral larvae. Biol Bull 186:172–181Google Scholar
  199. 199.
    Morse DE, Morse ANC (1991) Enzymatic characterization of the morphogen recognized by Agaricia humilis (scleractinian coral) larvae. Biol Bull 181:104–122Google Scholar
  200. 200.
    Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18:273–279Google Scholar
  201. 201.
    Negri AP, Webster NS, Hill RT et al (2001) Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar Ecol Prog Ser 223:121–131Google Scholar
  202. 202.
    Toth GB, Pavia H (2002) Lack of phlorotannin induction in the kelp Laminaria hyperborea in response to grazing by two gastropod herbivores. Mar Biol 140:403–409Google Scholar
  203. 203.
    Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55PubMedGoogle Scholar
  204. 204.
    Karban R, Baldwin IT (2007) Induced responses to herbivory. University of Chicago Press, Chicago, ILGoogle Scholar
  205. 205.
    Potin P, Bouarab K, Salaun JP et al (2002) Biotic interactions of marine algae. Curr Opin Plant Biol 5:308–317PubMedGoogle Scholar
  206. 206.
    Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103–134Google Scholar
  207. 207.
    Van Alstyne KL (1988) Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69:655–663Google Scholar
  208. 208.
    Paul VJ, Van Alstyne KL (1992) Activation of chemical defenses in the tropical green algae Halimeda spp. J Exp Mar Biol Ecol 160:191–203Google Scholar
  209. 209.
    Jung V, Pohnert G (2001) Rapid wound-activated transformation of the green algal defensive metabolite caulerpenyne. Tetrahedron 57:7169–7172Google Scholar
  210. 210.
    Jung V, Thibaut T, Meinesz A et al (2002) Comparison of the wound-activated transformation of caulerpenyne by invasive and noninvasive Caulerpa species of the Mediterranean. J Chem Ecol 28:2091–2105PubMedGoogle Scholar
  211. 211.
    Van Alstyne KL (2008) Ecological and physiological roles of dimethylsulfoniopropionate and its products in marine macroalgae. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 173–194Google Scholar
  212. 212.
    de Nys R, Coll JC, Price IR (1991) Chemically mediated interactions between the red alga Plocamium hamatum (Rhodophyta) and the octocoral Sinularia cruciata (Alcyonacea). Mar Biol 108:315–320Google Scholar
  213. 213.
    McCook L, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417Google Scholar
  214. 214.
    Suzuki Y, Takabashi T, Kawaguchi T et al (1998) Isolation of an alleolopathic substance from the crustose coralline algae Lithophyllum spp., and its effect on the brown alga Laminaria religiosa Miyabe (Phaeophyta). J Exp Mar Biol Ecol 225:69–77Google Scholar
  215. 215.
    Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339Google Scholar
  216. 216.
    Kim M-J, Choi JS, Kang SE et al (2004) Multiple allelopathic activity of the crustose coralline alga Lithophyllum yessoense against settlement and germination of seaweed spores. J Appl Phycol 16:175–179Google Scholar
  217. 217.
    Vermeij MJA, Dailer ML, Smith CM (2011) Crustose coralline algae can suppress macroalgal growth and recruitment on Hawaiian coral reefs. Mar Ecol Prog Ser 422:1–7Google Scholar
  218. 218.
    Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. Proc Natl Acad Sci U S A 107:9683–9688. doi: 10.1073/pnas.0912095107 PubMedCentralPubMedGoogle Scholar
  219. 219.
    Andras T, Alexander TS, Gahlena A et al (2012) Seaweed allelopathy against coral: surface distribution of seaweed secondary metabolites by imaging mass spectrometry. J Chem Ecol 38:1203–1214PubMedCentralPubMedGoogle Scholar
  220. 220.
    Rasher DB, Stout EP, Engel S et al (2011) Macroalgal terpenes function as allelopathic agents against reef corals. Proc Natl Acad Sci U S A 108:17726–17731. doi: 10.1073/pnas.1108628108 PubMedCentralPubMedGoogle Scholar
  221. 221.
    Marques LV, Villaca R, Pereira RC (2006) Susceptibility of macroalgae to herbivorous fishes at Rocas Atoll, Brazil. Bot Mar 49:379–385Google Scholar
  222. 222.
    Hay ME (1992) Seaweed chemical defenses: their role in the evolution of feeding specialization and in mediating complex interactions. In: Paul VJ (ed) Ecological roles for marine secondary metabolites; explorations in chemical ecology series. Cornstock Publishing Associates, Ithaca, pp 93–118Google Scholar
  223. 223.
    Amsler CD, McClintock JB, Baker BJ (2012) Palatability of living and dead detached Antarctic macroalgae to consumers. Antarct Sci 24:589–590Google Scholar
  224. 224.
    Estes JA, Steinberg PD (1988) Predation, herbivory, and kelp evolution. Paleobiology 15:57–60Google Scholar
  225. 225.
    Shears NT, Ross PM (2010) Toxic Cascades: multiple anthropogenic stressors have complex and unanticipated interactive effects on temperate reefs. Ecol Lett 13:1149–1159PubMedGoogle Scholar
  226. 226.
    Kvitek R, Bretz C (2004) Harmful algal bloom toxins protect bivalve populations from sea otter predation. Mar Ecol Prog Ser 271:233–243Google Scholar
  227. 227.
    Kvitek R, DeGange AR, Beitler MK (1991) Paralytic shellfish toxins mediate sea otter food preference. Limnol Oceanogr 36:393–404Google Scholar
  228. 228.
    Cimino G, Ghiselin MT (2009) Chemical defense and the evolution of opisthobranch gastropods. Proc Calif Acad Sci 60:175–422Google Scholar
  229. 229.
    Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Ann Rev Mar Sci 1:193–212PubMedCentralPubMedGoogle Scholar
  230. 230.
    Pereira RC, Teixeira VL (1999) Sesquiterpenos das algas marinhas Laurencia lamouroux (Ceramiales, Rhodophyta). 1. Significado ecologico. Quim Nova 22:360–374Google Scholar
  231. 231.
    Avila C (1995) Natural products from opisthobranch molluscs: a biological review. Oceanogr Mar Biol 33:487–559Google Scholar
  232. 232.
    Rogers CN, de Nys R, Charlton TS et al (2000) Dynamics of algal secondary metabolites in two species of sea hare. J Chem Ecol 26:721–744Google Scholar
  233. 233.
    Pereira RC, Bianco EM, Bueno LB et al (2010) Associational defense against herbivory between brown seaweeds. Phycologia 49:424–428Google Scholar
  234. 234.
    Hay ME, Duffy JE, Fenical W (1990) Host-plant specialization decreases predation on a marine amphipod: an herbivore in plant's clothing. Ecology 71:733–743Google Scholar
  235. 235.
    Zamzow JP, Amsler CD, McClintock JB et al (2010) Habitat choice and predator avoidance by Antarctic amphipods: the roles of algal chemistry and morphology. Mar Ecol Prog Ser 400:155–163. doi: 10.3354/meps08399 Google Scholar
  236. 236.
    Amsler CD, McClintock JB, Baker BJ (1999) An antarctic feeding triangle: defensive interactions between macroalgae, sea urchins, and sea anemomes. Mar Ecol Prog Ser 183:105–114Google Scholar
  237. 237.
    Richardson MG (1979) The distribution of Antarctic marine macroalgae related to depth and substrate. Br Antarct Surv B 49:1–13Google Scholar
  238. 238.
    Cubit JD (1975) Interaction of seasonally changing physical factors and grazing affecting high intertidal communities on a rocky shore. University of Oregon, Eugene, ORGoogle Scholar
  239. 239.
    Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9Google Scholar
  240. 240.
    Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16Google Scholar
  241. 241.
    Cheplick GP, Clay K (1988) Acquired chemical defences in grasses: the role of fungal endophytes. Oikos 52:309–318Google Scholar
  242. 242.
    Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher fungi. Academic, New York, NYGoogle Scholar
  243. 243.
    Payo DA, Colo J, Calumpong H et al (2011) Variability of non-polar secondary metabolites in the red alga Portieria. Mar Drugs 9:2438–2468PubMedCentralPubMedGoogle Scholar
  244. 244.
    Verges A, Paul NA, Steinberg PD (2008) Sex and life-history stage alter herbivore responses to a chemically defended red alga. Ecology 89:1334–1343PubMedGoogle Scholar
  245. 245.
    Thornber C, Stachowicz JJ, Gaines S (2006) Tissue type matters: selective herbivory on different life history stages of an isomorphic alga. Ecology 87:2255–2263PubMedGoogle Scholar
  246. 246.
    IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, NY USAGoogle Scholar
  247. 247.
    Harley CDG, Anderson KM, Demes KW et al (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078Google Scholar
  248. 248.
    Ries J, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134Google Scholar
  249. 249.
    Diaz-Pulido G, Gouezo M, Tilbrook B et al (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162PubMedCentralPubMedGoogle Scholar
  250. 250.
    McCook LJ (1999) Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18:357–367Google Scholar
  251. 251.
    Enge S, Nylund GM, Harder T et al (2012) An exotic chemical weapon explains low herbivore damage in an invasive alga. Ecology 93:2736–2745PubMedGoogle Scholar
  252. 252.
    Enge S, Nylund GM, Pavia H (2013) Native generalist herbivores promote invasion of a chemically defended seaweed via refuge-mediated apparent competition. Ecol Lett 16:487–492PubMedGoogle Scholar
  253. 253.
    Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasion: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710Google Scholar
  254. 254.
    Santini-Bellan D, Arnaud PM, Bellan G et al (1996) The Influence of the introduced tropical alga Caulerpa taxifolia, on the biodiversity of the Mediterranean marine biota. J Mar Biol Assoc UK 76:235–237Google Scholar
  255. 255.
    Davis AR, Benkendorff K, Ward DW (2005) Responses of common SE Australian herbivores to three suspected invasive Caulerpa spp. Mar Biol 146:859–868Google Scholar
  256. 256.
    Boudouresque CF, Lemme R, Mari X et al (1996) The invasive alga Caulerpa taxifolia is not a suitable diet for the sea urchin Paracentrotus lividus. Aquat Bot 53:245–250Google Scholar
  257. 257.
    Khalilieh HS, Boulos A (2006) A glimpse on the uses of seaweeds in the Islamic science and daily life during the classical period. Arabic Sci Phil 16:91–101Google Scholar
  258. 258.
    Dillehay TD, Ramirez C, Pino M et al (2008) Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320:784–786. doi: 10.1126/science.1156533 PubMedGoogle Scholar
  259. 259.
    Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262Google Scholar
  260. 260.
    Bassetti M, Merelli M, Temperoni C et al (2013) New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob 12:22–36. doi: 10.1186/1476-0711-12-22 PubMedCentralPubMedGoogle Scholar
  261. 261.
    Pink R, Hudson A, Mouries MA et al (2005) Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 4:727–740. doi: 10.1038/nrd1824 PubMedGoogle Scholar
  262. 262.
    Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837. doi: 10.1038/nature03194 PubMedGoogle Scholar
  263. 263.
    Coley PD, Kursar TA (2014) Ecology. On tropical forests and their pests. Science 343:35–36. doi: 10.1126/science.1248110 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2015

Authors and Affiliations

  • Ryan M. Young
    • 1
  • Kathryn M. Schoenrock
    • 2
  • Jacqueline L. von Salm
    • 1
  • Charles D. Amsler
    • 2
  • Bill J. Baker
    • 1
  1. 1.Department of Chemistry and Center for Drug Discovery and InnovationUniversity of South FloridaTampaUSA
  2. 2.Department of BiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations