Characterization of Phlorotannins from Brown Algae by LC-HRMS

  • Jeremy E. Melanson
  • Shawna L. MacKinnon
Part of the Methods in Molecular Biology book series (MIMB, volume 1308)


Phlorotannins are a class of polyphenols found in brown seaweeds that have significant potential for use as therapeutics, owing to their wide range of bioactivities. Molecular characterization of phlorotannin-enriched extracts is challenging due to the extreme sample complexity and the wide range of molecular weights observed. Herein, we describe a method for characterizing phlorotannins employing ultrahigh-pressure liquid chromatography (UHPLC) operating in hydrophilic interaction liquid chromatography (HILIC) mode combined with high-resolution mass spectrometry (HRMS).

Key words

Brown seaweed High-resolution mass spectrometry Hydrophilic interaction liquid chromatography Phlorotannins Polyphenols 


  1. 1.
    Parys S, Rosenbaum A, Kehraus S et al (2007) Evaluation of quantitative methods for the determination of polyphenols in algal extracts. J Nat Prod 70:1865–1870PubMedCrossRefGoogle Scholar
  2. 2.
    Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 4. Biopress, Bristol, pp 129–241Google Scholar
  3. 3.
    Targett NM, Arnold TM (1998) Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205CrossRefGoogle Scholar
  4. 4.
    Toth GB, Pavia H (2001) Removal of dissolved brown algal phlorotannins using insoluble polyvinylpolypyrrolidone (PVPP). J Chem Ecol 27:1899–1910PubMedCrossRefGoogle Scholar
  5. 5.
    Audibert L, Fauchon M, Blanc N et al (2010) Phenolic compounds in the brown seaweed Ascophyllum nodosum: distribution and radical-scavenging activities. Phytochem Anal 21:399–405PubMedCrossRefGoogle Scholar
  6. 6.
    Lopes G, Pinto E, Andrade PB et al (2013) Antifungal activity of phlorotannins against dermatophytes and yeasts: approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS One 8:e72203PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Lee SH, Jeon YJ (2013) Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 86:129–136PubMedCrossRefGoogle Scholar
  8. 8.
    Kwon HJ, Ryu YB, Kim YM et al (2013) In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorg Med Chem 21:4706–4713PubMedCrossRefGoogle Scholar
  9. 9.
    Kim H, Kong CS, Lee JI et al (2013) Evaluation of inhibitory effect of phlorotannins from Ecklonia cava on triglyceride accumulation in adipocyte. J Agric Food Chem 61:8541–8547PubMedCrossRefGoogle Scholar
  10. 10.
    Kannan RRR, Aderogba MA, Ndhlala AR et al (2013) Acetylcholinesterase inhibitory activity of phlorotannins isolated from the brown alga, Ecklonia maxima (Osbeck) Papenfuss. Food Res Int 54:1250–1254CrossRefGoogle Scholar
  11. 11.
    Freile-Pelegrín Y, Robledo D (2013) Bioactive phenolic compounds from algae. In: Hernandez-Ledesma B, Herrero M (eds) Bioactive compounds from marine foods: plants and animal sources. John Wiley & Sons Ltd., Oxford, pp 113–129CrossRefGoogle Scholar
  12. 12.
    Tierney MS, Smyth TJ, Rai DK et al (2013) Enrichment of polyphenol contents and antioxidant activities of Irish brown macroalgae using food-friendly techniques based on polarity and molecular size. Food Chem 139:753–761PubMedCrossRefGoogle Scholar
  13. 13.
    Kim AR, Shin TS, Lee MS et al (2009) Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J Agric Food Chem 57:3483–3489PubMedCrossRefGoogle Scholar
  14. 14.
    Stern JL, Hagerman AE, Steinberg PD et al (1996) Phlorotannin-protein interactions. J Chem Ecol 22:1877–1899PubMedCrossRefGoogle Scholar
  15. 15.
    Koivikko R, Loponen J, Pihlaja K et al (2007) High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem Anal 18:326–332PubMedCrossRefGoogle Scholar
  16. 16.
    Yanagida A, Murao H, Ohnishi-Kameyama M et al (2007) Retention behavior of oligomeric proanthocyanidins in hydrophilic interaction chromatography. J Chromatogr A 1143:153–161PubMedCrossRefGoogle Scholar
  17. 17.
    Kim SM, Kang SW, Jeon JS et al (2013) Determination of major phlorotannins in Eisenia bicyclis using hydrophilic interaction chromatography: seasonal variation and extraction characteristics. Food Chem 138:2399–2406PubMedCrossRefGoogle Scholar
  18. 18.
    Steevensz AJ, MacKinnon SL, Hankinson R et al (2012) Profiling phlorotannins in brown macroalgae by liquid chromatography-high resolution mass spectrometry. Phytochem Anal 23:547–553PubMedCrossRefGoogle Scholar
  19. 19.
    Ferreres F, Lopes G, Gil-Izquierdo A et al (2012) Phlorotannin extracts from Fucales characterized by HPLC-DAD-ESI-MSn: Approaches to hyaluronidase inhibitory capacity and antioxidant properties. Mar Drugs 10:2766–2781PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Motilva MJ, Serra A, Macià A (2013) Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: an overview. J Chromatogr A 1292:66–82PubMedCrossRefGoogle Scholar
  21. 21.
    Tierney M, Soler-Vila A, Rai D et al (2013) UPLC-MS profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis. Metabolomics 10:524–535CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2015

Authors and Affiliations

  1. 1.Measurement Science and StandardsNational Research Council of CanadaOttawaCanada
  2. 2.Aquatic and Crop Resource DevelopmentNational Research Council of CanadaHalifaxCanada

Personalised recommendations