Databases for Plant Phosphoproteomics

  • Waltraud X. Schulze
  • Qiuming Yao
  • Dong Xu
Part of the Methods in Molecular Biology book series (MIMB, volume 1306)


Phosphorylation is the most studied posttranslational modification involved in signal transduction in stress responses, development, and growth. In the recent years large-scale phosphoproteomic studies were carried out using various model plants and several growth and stress conditions. Here we present an overview of online resources for plant phosphoproteomic databases: PhosPhAt as a resource for Arabidopsis phosphoproteins, P3DB as a resource expanding to crop plants, and Medicago PhosphoProtein Database as a resource for the model plant Medicago trunculata.

Key words

Phosphorylation site database PhosPhAt P3DB Motif Network 


  1. 1.
    Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Genet 14(1):35–48CrossRefGoogle Scholar
  2. 2.
    Chung HJ, Sehnke PC, Ferl RJ (1999) The 14-3-3 proteins: cellular regulators of plant metabolism. Trends Plant Sci 4(9):367–371CrossRefPubMedGoogle Scholar
  3. 3.
    Yaffe MB (2002) Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 3(3):177–186CrossRefPubMedGoogle Scholar
  4. 4.
    Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191–203CrossRefPubMedGoogle Scholar
  5. 5.
    Pawson T, Gish GD (1992) SH2 and SH3 domains: from structure to function. Cell 71:359–362CrossRefPubMedGoogle Scholar
  6. 6.
    Camoni L, Iori V, Marra M, Aducci P (2000) Phosphorylation-dependent interaction between plant plasma membrane H(+)ATPase and 14-3-3 proteins. J Biol Chem 275(14):99919–99923CrossRefGoogle Scholar
  7. 7.
    Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132(2):666–680CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Xue L, Wang P, Wang L, Renzi E, Radivojac P, Tang H, Arnold R, Zhu JK, Tao WA (2013) Quantitative measurement of phosphoproteome response to osmotic stress in arabidopsis based on Library-Assisted eXtracted Ion Chromatogram (LAXIC). Mol Cell Proteomics 12(8):2354–2369CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Science Signaling 6(270):rs8CrossRefPubMedGoogle Scholar
  10. 10.
    Wang X, Goshe MB, Sonderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis Brassinosteroid-insensitive 1 receptor kinase. Plant Cell 17:1685–1703CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Wu X, Sanchez-Rodriguez C, Pertl-Obermeyer H, Obermeyer G, Schulze WX (2013) Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 12(10):2856–2873CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Wang P, Xue L, Batelli G, Lee S, Hou YJ, Van Oosten MJ, Zhang H, Tao WA, Zhu JK (2013) Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci U S A 110(27):11205–11210CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Lan P, Li W, Wen TN, Schmidt W (2012) Quantitative phosphoproteome profiling of iron-deficient Arabidopsis roots. Plant Physiol 159(1):403–417CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Reiland S, Messerli G, Baerenfäller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150(2):889–903CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, Toyoda T, Tomita M, Ishihama Y, Shirasu K (2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol 153:1161–1174CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Li H, Wong WS, Zhu L, Guo HW, Ecker J, Li N (2009) Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics 9(6):1646–1661CrossRefPubMedGoogle Scholar
  17. 17.
    Chen Y, Höhenwarter W, Weckwerth W (2010) Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and MAPA. Plant J 63(1):1–17PubMedGoogle Scholar
  18. 18.
    Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen starved Arabidopsis seedlings. Plant J 69(6):978–995CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Niittylä T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6(10):1711–1726CrossRefPubMedGoogle Scholar
  20. 20.
    Kline KG, Barrett-Wilt GA, Sussman MR (2010) In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci U S A 107(36):15986–15991CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Hardin SC, Larue CT, Oh MH, Jain V, Huber SC (2009) Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem J 422(2):305–312CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    van Noort V, Seebacher J, Bader S, Mohammed S, Vonkova I, Betts MJ, Kühnert S, Kumar R, Maier T, O'Flaherty M, Rybin V, Schmeisky A, Yus E, Stülke J, Serrano L, Russell RB, Heck AJ, Bork P, Gavin AC (2012) Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium. Mol Syst Biol 8:571PubMedCentralPubMedGoogle Scholar
  23. 23.
    Hunter T (2007) The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28:730–738CrossRefPubMedGoogle Scholar
  24. 24.
    Thomas SN, Cripps D, Yang AJ (2009) Proteomic analysis of protein phosphorylation and ubiquitination in Alzheimer's disease. Methods Mol Biol 566:109–121CrossRefPubMedGoogle Scholar
  25. 25.
    Van Wijk KJ, Friso G, Walther D, Schulze WX (2014) Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26(6):2367–2389CrossRefPubMedGoogle Scholar
  26. 26.
    Hummel J, Niemann M, Wienkoop S, Schulze W, Steinhauser D, Selbig J, Walther D, Weckwerth W (2007) ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites. BMC Bioinformatics 8(1):216–223CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD, van Wijk KJ (2008) PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 37:D969–D974CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX (2010) PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38:D828–D834CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Zulawski M, Braginets R, Schulze WX (2013) PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res 41(D1):D1176–D1184CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Joshi HJ, Hirsch-Hoffmann M, Bärenfaller K, Gruissem W, Baginsky S, Schmidt R, Schulze WX, Sun Q, van Wijk KJ, Egelhofer V, Wienkoop S, Weckwerth W, Bruley C, Rolland N, Toyoda T, Nakagami H, Jones AME, Briggs SP, Castleden I, Tanz SK, Millar H, Heazlewood JL (2011) MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155(1):259–270CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Gao J, Agrawal GK, Thelen JJ, Xu D (2009) P3DB: a plant protein phosphorylation database. Nucleic Acids Res 37:D960–D962CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Yao Q, Ge H, Wu S, Zhang N, Chen W, Xu C, Gao J, Thelen JJ, Xu D (2014) P3DB 3.0: from plant phosphorylation sites to protein networks. Nucleic Acids Res 42:D1206–D1213CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Huang Y, Houston NL, Tovar-Mendez A, Stevenson SE, Miernyk JA, Randall DD, Thelen JJ (2010) A quantitative mass spectrometry-based approach for identifying protein kinase-clients and quantifying kinase activity. Anal Biochem 402(1):69–76CrossRefPubMedGoogle Scholar
  35. 35.
    Gao J, Thelen JJ, Dunker AK, Xu D (2010) Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 9(12):2586–2600CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ane JM, Coon JJ (2010) Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 152(1):19–28CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Rose CM, Venkateshwaran M, Grimsrud PA, Westphall MS, Sussman MR, Coon JJ, Ane JM (2012) Medicago PhosphoProtein Database: a repository for Medicago trunculata phosphoprotein data. Frontiers in Plant Science 3:122PubMedCentralPubMedGoogle Scholar
  38. 38.
    Duan G, Walther D, Schulze WX (2013) Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana. Front Plant Sci 4:540CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Stecker KE, Minkoff BB, Sussman MR (2014) Phosphoproteomic analyses reveal early signaling event sin the osmotic stress response. Plant Physiol 165(3):1171–1187CrossRefGoogle Scholar
  40. 40.
    Schwartz D, Gygi SP (2005) An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol 23(11):1391–1398CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Plant Systems BiologyUniversität HohenheimStuttgartGermany
  2. 2.Department of Computer Science and Bond Life Sciences CenterUniversity of MissouriColumbiaUSA

Personalised recommendations