Skip to main content

The SDREM Method for Reconstructing Signaling and Regulatory Response Networks: Applications for Studying Disease Progression

  • Protocol
Book cover Systems Biology of Alzheimer's Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1303))

Abstract

The Signaling and Dynamic Regulatory Events Miner (SDREM) is a powerful computational approach for identifying which signaling pathways and transcription factors control the temporal cellular response to a stimulus. SDREM builds end-to-end response models by combining condition-independent protein–protein interactions and transcription factor binding data with two types of condition-specific data: source proteins that detect the stimulus and changes in gene expression over time. Here we describe how to apply SDREM to study human diseases, using epidermal growth factor (EGF) response impacting neurogenesis and Alzheimer’s disease as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bar-Joseph Z, Gitter A, Simon I (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat Rev Genet 13:552–564

    Article  CAS  PubMed  Google Scholar 

  2. Gitter A, Carmi M, Barkai N, Bar-Joseph Z (2013) Linking the signaling cascades and dynamic regulatory networks controlling stress responses. Genome Res 23:365–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ernst J, Vainas O, Harbison CT et al (2007) Reconstructing dynamic regulatory maps. Mol Syst Biol 3:74

    Article  PubMed Central  PubMed  Google Scholar 

  4. Schulz MH, Devanny WE, Gitter A et al (2012) DREM 2.0: improved reconstruction of dynamic regulatory networks from time-series expression data. BMC Syst Biol 6:104

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gitter A, Klein-Seetharaman J, Gupta A, Bar-Joseph Z (2011) Discovering pathways by orienting edges in protein interaction networks. Nucleic Acids Res 39:e22

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gitter A, Bar-Joseph Z (2013) Identifying proteins controlling key disease signaling pathways. Bioinformatics 29:i227–i236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wiltrout C, Lang B, Yan Y et al (2007) Repairing brain after stroke: a review on post-ischemic neurogenesis. Neurochem Int 5:1028–1041

    Article  Google Scholar 

  8. Jin K, Peel AL, Mao XO et al (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 101:343–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Repetto E, Yoon I-S, Zheng H, Kang DE (2007) Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway. J Biol Chem 282:31504–31516

    Article  CAS  PubMed  Google Scholar 

  10. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  13. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  PubMed Central  Google Scholar 

  14. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Amit I, Citri A, Shay T et al (2007) A module of negative feedback regulators defines growth factor signaling. Nat Genet 39:503–512

    Article  CAS  PubMed  Google Scholar 

  16. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Huang DW, Sherman BT, Stephens R et al (2008) DAVID gene ID conversion tool. Bioinformation 2:428–430

    Article  PubMed Central  Google Scholar 

  18. Huang H, McGarvey PB, Suzek BE et al (2011) A comprehensive protein-centric ID mapping service for molecular data integration. Bioinformatics 27:1190–1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ernst J, Plasterer HL, Simon I, Bar-Joseph Z (2010) Integrating multiple evidence sources to predict transcription factor binding in the human genome. Genome Res 20:526–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  PubMed Central  Google Scholar 

  21. Chatr-aryamontri A, Breitkreutz B-J, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816–D823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Prasad TSK, Goel R, Kandasamy K et al (2009) Human protein reference database—2009 update. Nucleic Acids Res 37:D767–D772

    Article  CAS  Google Scholar 

  23. Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34:D504–D506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Aranda B, Blankenburg H, Kerrien S et al (2011) PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat Meth 8:528–529

    Article  CAS  Google Scholar 

  25. Croft D, O’Kelly G, Wu G et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39:D691–D697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (1RO1 GM085022) and National Science Foundation (DBI-0965316) awards to Z.B.J. A.G. is supported by Microsoft Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Gitter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gitter, A., Bar-Joseph, Z. (2016). The SDREM Method for Reconstructing Signaling and Regulatory Response Networks: Applications for Studying Disease Progression. In: Castrillo, J., Oliver, S. (eds) Systems Biology of Alzheimer's Disease. Methods in Molecular Biology, vol 1303. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2627-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2627-5_30

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2626-8

  • Online ISBN: 978-1-4939-2627-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics