Skip to main content

A Computational Network Biology Approach to Uncover Novel Genes Related to Alzheimer’s Disease

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1303))

Abstract

Recent advances in the fields of genetics and genomics have enabled the identification of numerous Alzheimer’s disease (AD) candidate genes, although for many of them the role in AD pathophysiology has not been uncovered yet. Concomitantly, network biology studies have shown a strong link between protein network connectivity and disease. In this chapter I describe a computational approach that, by combining local and global network analysis strategies, allows the formulation of novel hypotheses on the molecular mechanisms involved in AD and prioritizes candidate genes for further functional studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Oti M, Brunner HG (2007) The modular nature of genetic diseases. Clin Genet 71:1–11

    Article  CAS  PubMed  Google Scholar 

  2. Zanzoni A, Soler-Lopez M, Aloy P (2009) A network medicine approach to human disease. FEBS Lett 583:1759–1765

    Article  CAS  PubMed  Google Scholar 

  3. Rual J-F, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  4. Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  CAS  PubMed  Google Scholar 

  5. Ewing RM, Chu P, Elisma F et al (2007) Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 3:89

    Article  PubMed Central  PubMed  Google Scholar 

  6. Stark C, Breitkreutz B-J, Chatr-Aryamontri A et al (2011) The BioGRID interaction database: 2011 update. Nucleic Acids Res 39:D698–D704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ceol A, Chatr Aryamontri A, Licata L et al (2010) MINT, the molecular interaction database: 2009 update. Nucleic Acids Res 38:D532–D539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Goh K-I, Cusick ME, Valle D et al (2007) The human disease network. Proc Natl Acad Sci U S A 104:8685–8690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Feldman I, Rzhetsky A, Vitkup D (2008) Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci U S A 105:4323–4328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lim J, Hao T, Shaw C et al (2006) A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125:801–814

    Article  CAS  PubMed  Google Scholar 

  12. Kaltenbach LS, Romero E, Becklin RR et al (2007) Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 3:e82

    Article  PubMed Central  PubMed  Google Scholar 

  13. Camargo LM, Collura V, Rain J-C et al (2007) Disrupted in achizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 12:74–86

    Article  CAS  PubMed  Google Scholar 

  14. Chen JY, Shen C, Sivachenko AY (2006) Mining Alzheimer disease relevant proteins from integrated protein interactome data. Pac Symp Biocomput: 367–378

    Google Scholar 

  15. Liu B, Jiang T, Ma S et al (2006) Exploring candidate genes for human brain diseases from a brain-specific gene network. Biochem Biophys Res Commun 349:1308–1314

    Article  CAS  PubMed  Google Scholar 

  16. Pujana MA, Han J-DJ, Starita LM et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39:1338–1349

    Article  CAS  PubMed  Google Scholar 

  17. Soler-Lopez M, Zanzoni A, Lluis R et al (2011) Interactome mapping suggests new mechanistic details underlying Alzheimer’s disease. Genome Res 21:364–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Soler-López M, Badiola N, Zanzoni A, Aloy P (2012) Towards Alzheimer’s root cause: ECSIT as an integrating hub between oxidative stress, inflammation and mitochondrial dysfunction: hypothetical role of the adapter protein ECSIT in familial and sporadic Alzheimer’s disease pathogenesis. Bioessays 34:532–541

    Article  PubMed  Google Scholar 

  19. McKusick VA (2007) Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 80:588–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Laird NM, Lange C (2006) Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet 7:385–394

    Article  CAS  PubMed  Google Scholar 

  21. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108

    Article  CAS  PubMed  Google Scholar 

  22. Orchard S (2012) Molecular interaction databases. Proteomics 12:1656–1662

    Article  CAS  PubMed  Google Scholar 

  23. Kerrien S, Orchard S, Montecchi-Palazzi L et al (2007) Broadening the horizon–level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol 5:44

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  PubMed Central  PubMed  Google Scholar 

  25. King AD, Przulj N, Jurisica I (2004) Protein complex prediction via cost-based clustering. Bioinformatics 20:3013–3020

    Article  CAS  PubMed  Google Scholar 

  26. Adamcsek B, Palla G, Farkas IJ et al (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22:1021–1023

    Article  CAS  PubMed  Google Scholar 

  27. Van Dongen S, Abreu-Goodger C (2012) Using MCL to extract clusters from networks. Methods Mol Biol 804:281–295

    Article  PubMed  Google Scholar 

  28. Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat Methods 9:471–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Becker E, Robisson B, Chapple CE et al (2012) Multifunctional proteins revealed by overlapping clustering in protein interaction network. Bioinformatics 28:84–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. The Gene Ontology Consortium (2010) The Gene Ontology in 2010: extensions and refinements. Nucleic Acids Res 38:D331–D335

    Article  PubMed Central  Google Scholar 

  31. NCBI Resource Coordinators (2013) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 41:D8–D20

    Article  PubMed Central  Google Scholar 

  32. Barrell D, Dimmer E, Huntley RP et al (2009) The GOA database in 2009—an integrated Gene Ontology Annotation resource. Nucleic Acids Res 37:D396–D403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Blalock EM, Geddes JW, Chen KC et al (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 101:2173–2178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Blalock EM, Buechel HM, Popovic J et al (2011) Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer’s disease. J Chem Neuroanat 42:118–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Dunckley T, Beach TG, Ramsey KE et al (2006) Gene expression correlates of neurofibrillary tangles in Alzheimer’s disease. Neurobiol Aging 27:1359–1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Tan MG, Chua W-T, Esiri MM et al (2010) Genome wide profiling of altered gene expression in the neocortex of Alzheimer’s disease. J Neurosci Res 88:1157–1169

    CAS  PubMed  Google Scholar 

  37. Matthews LR, Vaglio P, Reboul J et al (2001) Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs”. Genome Res 11:2120–2126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Oliver S (2000) Guilt-by-association goes global. Nature 403:601–603

    Article  CAS  PubMed  Google Scholar 

  39. Venkatesan K, Rual J-F, Vazquez A et al (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Brohée S, van Helden J (2006) Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7:488

    Article  PubMed Central  PubMed  Google Scholar 

  41. Song J, Singh M (2009) How and when should interactome-derived clusters be used to predict functional modules and protein function? Bioinformatics 25:3143–3150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

  43. Bertram L, McQueen MB, Mullin K et al (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23

    Article  CAS  PubMed  Google Scholar 

  44. Ioannidis JPA, Boffetta P, Little J et al (2008) Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol 37:120–132

    Article  PubMed  Google Scholar 

  45. The UniProt Consortium (2013) Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 41:D43–D47

    Article  PubMed Central  Google Scholar 

  46. Flicek P, Ahmed I, Amode MR et al (2013) Ensembl 2013. Nucleic Acids Res 41:D48–D55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kinsella RJ, Kähäri A, Haider S et al (2011) Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford) 2011:bar030

    Google Scholar 

  48. Chatr-Aryamontri A, Ceol A, Licata L, Cesareni G (2008) Protein interactions: integration leads to belief. Trends Biochem Sci 33:241–242, author reply 242–243

    Article  CAS  PubMed  Google Scholar 

  49. Braun P, Tasan M, Dreze M et al (2009) An experimentally derived confidence score for binary protein-protein interactions. Nat Methods 6:91–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kamburov A, Stelzl U, Herwig R (2012) IntScore: a web tool for confidence scoring of biological interactions. Nucleic Acids Res 40:W140–W146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256. http://arxiv.org/abs/cond-mat/0303516/

    Google Scholar 

  52. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  53. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Saito R, Smoot ME, Ono K et al (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Morris JH, Apeltsin L, Newman AM et al (2011) clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics 12:436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Spinelli L, Gambette P, Chapple CE et al (2013) Clust&See: a Cytoscape plugin for the identification, visualization and manipulation of network clusters. Biosystems 113:91–95

    Article  PubMed  Google Scholar 

  57. Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Calderone A, Castagnoli L, Cesareni G (2013) mentha: a resource for browsing integrated protein-interaction networks. Nat Methods 10:690–691

    Article  CAS  PubMed  Google Scholar 

  59. Aranda B, Blankenburg H, Kerrien S et al (2011) PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat Methods 8:528–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Persico M, Ceol A, Gavrila C et al (2005) HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinformatics 6(Suppl 4):S21

    Article  PubMed Central  PubMed  Google Scholar 

  61. Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21:2076–2082

    Article  CAS  PubMed  Google Scholar 

  62. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  63. Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23:257–258

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledges the “Plan Cancer 2009-2013, Biologie des systèmes” funded by the French government for current support. The author would also like to thank Christine Brun and Daniela Ruffell for critically reading this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Zanzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zanzoni, A. (2016). A Computational Network Biology Approach to Uncover Novel Genes Related to Alzheimer’s Disease. In: Castrillo, J., Oliver, S. (eds) Systems Biology of Alzheimer's Disease. Methods in Molecular Biology, vol 1303. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2627-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2627-5_26

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2626-8

  • Online ISBN: 978-1-4939-2627-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics