Advertisement

Droplet Digital PCR for Absolute Quantification of Pathogens

  • Ion Gutiérrez-Aguirre
  • Nejc Rački
  • Tanja Dreo
  • Maja Ravnikar
Part of the Methods in Molecular Biology book series (MIMB, volume 1302)

Abstract

The recent advent of different digital PCR (dPCR) platforms is enabling the expansion of this technology for research and diagnostic applications worldwide. The main principle of dPCR, as in other PCR-based methods including quantitative PCR (qPCR), is the specific amplification of a nucleic acid target. The distinctive feature of dPCR is the separation of the reaction mixture into thousands to millions of partitions which is followed by a real time or end point detection of the amplification. The distribution of target sequences into partitions is described by the Poisson distribution, thus allowing accurate and absolute quantification of the target from the ratio of positive against all partitions at the end of the reaction. This omits the need to use reference materials with known target concentrations and increases the accuracy of quantification at low target concentrations compared to qPCR. dPCR has also shown higher resilience to inhibitors in a number of different types of samples. In this chapter we describe the droplet digital PCR (ddPCR) workflow for the detection and quantification of pathogens using the droplet digital Bio-Rad platform QX100. We present as an example the quantification of the quarantine plant pathogenic bacterium, Erwinia amylovora.

Key words

Digital PCR Droplet digital PCR Plant pathogens Absolute quantification Viruses Bacteria 

References

  1. 1.
    López MM, Llop P, Olmos A et al (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46PubMedGoogle Scholar
  2. 2.
    Mackay IM, Arden KE, Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Res 30:1292–1305PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kubista M, Andrade JM, Bengtsson M et al (2006) The real-time polymerase chain reaction. Mol Aspects Med 27:95–125PubMedCrossRefGoogle Scholar
  4. 4.
    Cankar K, Stebih D, Dreo T et al (2006) Critical points of DNA quantification by real-time PCR-effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol 6:37–55PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Sedlak RH, Jerome KR (2013) Viral diagnostics in the era of digital polymerase chain reaction. Diagn Microbiol Infect Dis 75:1–4PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Sykes PJ, Neoh SH, Brisco MJ et al (1992) Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13:444–449PubMedGoogle Scholar
  7. 7.
    Dube S, Qin J, Ramakrishnan R (2008) Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3(8):e2876PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Pekin D, Skhiri Y, Baret JC et al (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11:2156–2166PubMedCrossRefGoogle Scholar
  9. 9.
    Huggett JF, Foy CA, Benes V (2013) The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem 59:892–902PubMedCrossRefGoogle Scholar
  10. 10.
    Rački N, Morisset D, Gutierrez-Aguirre I et al (2014) One-step RT-droplet digital PCR: a breakthrough in the quantification of waterborne RNA viruses. Anal Bioanal Chem 406:661–667PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Morisset D, Štebih D, Milavec M et al (2013) Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One 8:e62583PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Rački N, Dreo T, Gutierrez-Aguirre I, Blejec A, Ravnikar M (2014) Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods 10:42Google Scholar
  13. 13.
    Baker M (2012) Digital PCR hits its stride. Nat Methods 9:541–544CrossRefGoogle Scholar
  14. 14.
    White RA, Quake SR, Curr K (2012) Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J Virol Methods 179:45–50PubMedCrossRefGoogle Scholar
  15. 15.
    Kiselinova M, Pasternak AO, De Spiegelaere W et al (2014) Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA. PLoS One 9:e85999PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Buchan BW, Ledeboer NA (2014) Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev 27:783–822PubMedCrossRefGoogle Scholar
  17. 17.
    Mehle N, Dreo T, Ravnikar M (2014) Quantitative analysis of “flavescence doreé” phytoplasma with droplet digital PCR. Phytopathogenic Mollicutes 4:9–15CrossRefGoogle Scholar
  18. 18.
    Dreo T, Pirc M, Ramšak Z et al (2014) Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Anal Bioanal Chem 406:6513–6528PubMedCrossRefGoogle Scholar
  19. 19.
    Leibovitch EC, Brunetto GS, Caruso B et al (2014) Coinfection of human herpesviruses 6A (HHV-6A) and HHV-6B as demonstrated by novel digital droplet PCR assay. PLoS One 9:e92328PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Kelley K, Cosman A, Belgrader P et al (2013) Detection of methicillin-resistant Staphylococcus aureus by a duplex droplet digital PCR assay. J Clin Microbiol 51:2033–2039PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622PubMedCrossRefGoogle Scholar
  22. 22.
    Pirc M, Ravnikar M, Tomlinson J, Dreo T (2009) Improved fireblight diagnostics using quantitative real-time PCR detection of Erwinia amylovora chromosomal DNA. Plant Pathol 58:872–881CrossRefGoogle Scholar
  23. 23.
    Yang R, Paparini A, Monis P et al (2014) Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int J Parasitol. doi: 10.1016/j.ijpara.2014.08.004 PubMedCentralGoogle Scholar
  24. 24.
    Sedlak RH, Kuypers J, Jerome KR (2014) A multiplexed droplet digital PCR assay performs better than qPCR on inhibition prone samples. Diagn Microbiol Infect Dis. doi: 10.1016/j.diagmicrobio.2014.09.004 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ion Gutiérrez-Aguirre
    • 1
  • Nejc Rački
    • 1
  • Tanja Dreo
    • 1
  • Maja Ravnikar
    • 1
  1. 1.Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia

Personalised recommendations