Silicon Photonic Micro-Ring Resonators for Drug Screening and Kinetic Analysis

  • Muzammil Iqbal
  • Rufus W. Burlingame
  • Randy Romero
  • Annabel Wang
  • Tyler Grove
  • Martin A. GleesonEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Genalyte has developed a turnkey silicon photonic chip sensing platform (Maverick™) for rapid detection of multiple biological analytes from a drop of sample. We present here the system applied to multiplex detection of antibodies in serum, the detection of receptor–ligand interactions, and the kinetic characterization of binding. The core of the technology is a silicon microchip, on the surface of which we pattern 128 microscopic ring resonators covered by a single microfluidic channel. The rings are individually functionalized to bind antigens for detecting serum analytes directly, antibodies for detecting immune response, or other biomarkers of interest in a sample that is pumped through the channel over the rings. The frequency of each ring’s optical resonance is exquisitely sensitive to the mass of bound analyte. A laser in the Maverick instrument interrogates the 128 rings almost simultaneously to quantify the presence of analytes. Currently, each assay is performed in quadruplicate, with 2 flow channels per chip, providing 15 multiplexed assays plus 1 control in each channel. Twelve chips are packaged into a consumable cartridge that can measure 24 samples. A 96-well plate with foil cover holds the reagents for all the tests, including 24 wells with a buffer solution, into which the operator loads the samples. The user needs only to collect a few drops of sample, transfer them to the sample well, insert the measurement cartridge and the well plate into the unit, and press start. The instrument performs all fluid operations internally, connecting dedicated probes from the measurement cartridge to the appropriate wells in the plate and pumping the sample and reagents through the microfluidic channels on the sensor chips as required by the assay protocol.

Key words

Drug screening Kinetics Protein interactions Photonic ring resonance 


  1. 1.
    McFedries A, Schwaid A, Saghatelian A (2013) Methods for the elucidation of protein-small molecule interactions. Chem Biol 20(5):667–673. doi: 10.1016/j.chembiol.2013.04.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Makley LN, Gestwicki JE (2013) Expanding the number of “druggable” targets: non-enzymes and protein-protein interactions. Chem Biol Drug Des 81(1):22–32. doi: 10.1111/cbdd.12066 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Hetland ML, Christensen J, Tarp U, Dreyer L, Hansen A, Hansen T, Kollerup G, Linde L, Lindegaard HM, Poulsen UE, Schlemmer A, Jensen DV, Jensen S, Hostenkamp G, Østergaard M, on Behalf of All Departments of Rheumatology in Denmark (2010) Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum 62(1):22–32. doi: 10.1002/art.27227
  4. 4.
    Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, Lichtiger S, D’Haens G, Diamond RH, Broussard DL, Tang KL, van der Woude CJ, Rutgeerts P, for the SONIC Study Group (2010) Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med 362(15):1383–1395. doi:  10.1056/NEJMoa0904492
  5. 5.
    Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N (2013) Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput Struct Biotechnol J 5:e201302011. doi: 10.5936/csbj.201302011 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Gonzalez LC (2012) Protein microarrays, biosensors, and cell-based methods for secretome-wide extracellular protein–protein interaction mapping. Methods 57:448–458. doi: 10.1016/j.ymeth.2012.06.004 CrossRefPubMedGoogle Scholar
  7. 7.
    Ramani SR, Toma I, Lewin-Koh N, Wranik B, DePalatis L, Zhang J, Eaton D, Gonzalez LC (2012) A secreted protein microarray platform for extracellular protein interaction discovery. Anal Biochem 420(2):127–138. doi: 10.1016/j.ab.2011.09.017 CrossRefPubMedGoogle Scholar
  8. 8.
    Iqbal M, Gleeson MA, Spaugh B, Tybor F, Gunn WG, Hochberg M, Baehr-Jones T, Bailey RC, Gunn LC (2010) Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE J Sel Top Quantum Electron 16:654–661. doi: 10.1109/JSTQE.2009.2032510 CrossRefGoogle Scholar
  9. 9.
    Qavi AJ, Mysz TM, Bailey RC (2011) Isothermal discrimination of single-nucleotide polymorphisms via kinetic desorption and label-free detection of DNA using silicon photonic microring resonator arrays. Anal Chem 83(17):6827–6833. doi: 10.1021/ac201659p CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Qavi AJ, Bailey RC (2010) Multiplexed detection and label-free quantitation of microRNAs using arrays of silicon photonic microring resonators. Angew Chem Int Ed Engl 49(27):4608–4611. doi: 10.1002/anie.201001712 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Washburn AL, Luchansky MS, Bowman AL, Bailey RC (2010) Quantitative, label-free detection of five protein biomarkers using arrays of silicon photonic microring resonators. Anal Chem 82(1):69–72. doi: 10.1021/ac902451b CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Scheler O, Kindt JT, Qavi AJ, Kaplinski L, Glynn B, Barry T, Kurg A, Bailey RC (2012) Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators. Biosens Bioelectron 36(1):56–61. doi: 10.1016/j.bios.2012.03.037 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Kirk JT, Brault ND, Baehr-Jones T, Hochberg M, Jiang S, Ratner DM (2013) Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted human plasma. Biosens Bioelectron 42:100–105. doi: 10.1016/j.bios.2012.10.079 CrossRefPubMedGoogle Scholar
  14. 14.
    Limpoco FT, Bailey RC (2011) Real-time monitoring of surface-initiated atom transfer radical polymerization using silicon photonic microring resonators: implications for combinatorial screening of polymer brush Growth Conditions. J Am Chem Soc 133(38):14864–14867. doi: 10.1021/ja205358g CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Byeon JY, Limpoco FT, Bailey RC (2010) Efficient bioconjugation of protein capture agents to biosensor surfaces using aniline-catalyzed hydrazone ligation. Langmuir 26(19):15430–15435. doi: 10.1021/la1021824 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Luchansky MS, Washburn AL, Martin TA, Iqbal M, Gunn LC, Bailey RC (2010) Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform. Biosens Bioelectron 26(4):1283–1291. doi: 10.1016/j.bios.2010.07.010 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Marty MT, Sloan CD, Bailey RC, Sligar SG (2012) Nonlinear analyte concentration gradients for one-step kinetic analysis employing optical microring resonators. Anal Chem 84(13):5556–5564. doi: 10.1021/ac300478f CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Byeon JY, Bailey RC (2011) Multiplexed evaluation of capture agent binding kinetics using arrays of silicon photonic microring resonators. Analyst 136(17):3430–3433. doi: 10.1039/c0an00853b CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Qavi AJ, Kindt JT, Gleeson MA, Bailey RC (2011) Anti-DNA:RNA antibodies and silicon photonic microring resonators: increased sensitivity for multiplexed microRNA detection. Anal Chem 83(15):5949–5956. doi: 10.1021/ac201340s CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Luchansky MS, Bailey RC (2011) Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. J Am Chem Soc 133(50):20500–20506. doi: 10.1021/ja2087618 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Luchansky MS, Washburn AL, McClellan MS, Bailey RC (2011) Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads. Lab Chip 11:2042–2044. doi: 10.1039/c1lc20231f CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Kindt JT, Luchansky MS, Qavi AJ, Bailey RC (2013) Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy. Lab Chip 11(12):2042–2044. doi: 10.1039/c1lc20231f Google Scholar
  23. 23.
    Kuhnline Sloan CD, Marty MT, Sligar SG, Bailey RC (2013) Interfacing lipid bilayer nanodiscs and silicon photonic sensor arrays for multiplexed protein-lipid and protein-membrane protein interaction screening. Anal Chem 85(5):2970–2976. doi: 10.1021/ac3037359 CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Mitchell G (1989) A review of Fabry-Perot interferometer sensors. Proc Phys 44:450–457Google Scholar
  25. 25.
    Murphy K, Gunther M, Vengsarkar A, Claus R (1991) Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensor. Opt Lett 16(4):273–275. doi: 10.1364/OL.16.000273 CrossRefPubMedGoogle Scholar
  26. 26.
    Brandenburg A, Edelhauser R, Hutter F (1991) Gas sensor based on an integrated optical interferometer. SPIE Chem Med Sensing 150:148–159. doi: 10.1117/12.47133 CrossRefGoogle Scholar
  27. 27.
    Arnold S, Khoshima M, Teraoka I, Holler S, Vollmer F (2003) Shift of whispering gallery modes in microspheres by protein adsorption. Opt Lett 28(4):272–274. doi: 10.1364/OL.28.000272 CrossRefPubMedGoogle Scholar
  28. 28.
    Hanumegowda N, Stica C, Patel B, White I, Fan X (2005) Refractometric sensors based on microsphere resonators. Appl Phys Lett 87:201107. doi: 10.1063/1.2132076 CrossRefGoogle Scholar
  29. 29.
    Boyd R, Heebner J (2001) Sensitive disk resonator photonic biosensor. Appl Opt 40(31):5742–5747. doi: 10.1364/AO.40.005742 CrossRefPubMedGoogle Scholar
  30. 30.
    Chow E, Grot A, Mirkarimi L, Sigalas M, Girolami G (2004) Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt Lett 29(10):1093–1095. doi: 10.1364/OL.29.001093 CrossRefPubMedGoogle Scholar
  31. 31.
    Ksendzov A, Lin Y (2005) Integrated optics ring-resonator sensor for protein detection. Opt Lett 30(24):3344–3346. doi: 10.1364/OL.30.003344 CrossRefPubMedGoogle Scholar
  32. 32.
    De Vos K, Bartolozi I, Schacht E, Bienstman P, Baets R (2007) Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Opt Express 15(12):7610–7615. doi: 10.1364/OE.15.007610 CrossRefPubMedGoogle Scholar
  33. 33.
    Kwon M, Steir W (2008) Microring-resonator-based sensor measuring both the concentration and temperature of a solution. Opt Express 16(13):9372–9377. doi: 10.1364/OE.16.009372 CrossRefPubMedGoogle Scholar
  34. 34.
    Armani A, Kulkarni R, Fraser S, Flagan R, Vahala K (2007) Label-free, single-molecule detection with optical microcavities. Science 317(5839):783–787. doi: 10.1126/science.1145002 CrossRefPubMedGoogle Scholar
  35. 35.
    Yariv A (2000) Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron Lett 36:321–322. doi: 10.1049/el:20000340 CrossRefGoogle Scholar
  36. 36.
    Eickhoff H, Malik A (2013) Planar protein arrays in microtiter plates: development of a new format towards accurate, automation-friendly and affordable (A(3)) diagnostics. Adv Biochem Eng Biotechnol 133:149–165. doi: 10.1007/10_2012_148 PubMedGoogle Scholar
  37. 37.
    Kirk JT, Fridley GE, Chamberlain JW, Christensen ED, Hochberg M, Ratner DM (2011) Multiplexed inkjet functionalization of silicon photonic biosensors. Lab Chip 11(7):1372–1377. doi: 10.1039/c0lc00313a CrossRefPubMedGoogle Scholar
  38. 38.
    Zhu M, Lerum MZ, Chen W (2012) How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir 28(1):416–423. doi: 10.1021/la203638g CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Zhang J-Y, Casiano CA, Peng X-X, Koziol JA, Chan EKL, Tan EM (2003) Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidemiol Biomarkers Prev 12(2):136–143PubMedGoogle Scholar
  40. 40.
    Hatherley D, Cherwinski HM, Moshref M, Barclay AN (2005) Recombinant CD200 Protein does not bind activating proteins closely related to CD200 Receptor. J Immunol 175:2469–2474. doi: 10.4049/jimmunol.175.4.2469 CrossRefPubMedGoogle Scholar
  41. 41.
    Voulgaraki D, Mitnacht-Kraus R, Letarte M, Foster-Cuevas M, Brown MH, Barclay AN (2005) Multivalent recombinant proteins for probing functions of leucocyte surface proteins such as the CD200 receptor immunology. Immunology 115(3):337–346. doi: 10.1111/j.1365-2567.2005.02161.x CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Muzammil Iqbal
    • 1
  • Rufus W. Burlingame
    • 1
  • Randy Romero
    • 1
  • Annabel Wang
    • 1
  • Tyler Grove
    • 1
  • Martin A. Gleeson
    • 1
    Email author
  1. 1.Genalyte, Inc.San DiegoUSA

Personalised recommendations