Kinetics Characterization of Ligand–Receptor Interactions Using Oblique-Incidence Reflectivity Difference Method

  • Shuang Liu
  • Guozhen Yang
  • Huibin LuEmail author
  • Heng ZhuEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


The oblique-incidence reflectivity difference (OIRD) method is a novel optical biosensor which has recently been applied to label-free, real-time detection of molecular interactions in microarray format using a functionalized glass substrate. The capability of the OIRD to independently monitor association and dissociation kinetics enables real-time profiling of ligand–receptor interactions. The microarray format of the OIRD method makes it a practical platform for high-throughput, system-wide affinity profiling of the interactions of proteins, DNA, or whole cells with a diverse set of biomolecules.

Key words

Binding kinetics Biomolecular interactions High-throughput Label-free Oblique-incidence reflectivity difference (OIRD) 



S.L. and H.Z. are supported in part by the NIH Common Fund grant U54RR020839.


  1. 1.
    Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7(1):55–63. doi: 10.1016/S1367-5931(02)00005-4 CrossRefPubMedGoogle Scholar
  2. 2.
    Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4(1):129–153. doi: 10.1146/annurev.bioeng.4.020702.153438 CrossRefPubMedGoogle Scholar
  3. 3.
    Templin MF, Stoll D, Schrenk M, Traub PC, Vöhringer CF, Joos TO (2002) Protein microarray technology. Drug Discov Today 7(15):815–822. doi: 10.1016/S1359-6446(00)01910-2 CrossRefPubMedGoogle Scholar
  4. 4.
    Schulman SG, Sharma A (1999) Introduction to fluorescence spectroscopy. Wiley, New YorkGoogle Scholar
  5. 5.
    Green R, Davies J, Davies M, Roberts C, Tendler S (1997) Surface plasmon resonance for real time in situ analysis of protein adsorption to polymer surfaces. Biomaterials 18(5):405–413CrossRefPubMedGoogle Scholar
  6. 6.
    Abdiche Y, Malashock D, Pinkerton A, Pons J (2008) Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal Biochem 377(2):209–217. doi: 10.1016/j.ab.2008.03.035 CrossRefPubMedGoogle Scholar
  7. 7.
    Hu S, Wan J, Su Y, Song Q, Zeng Y, Nguyen HN, Shin J, Cox E, Rho HS, Woodard C (2013) DNA methylation presents distinct binding sites for human transcription factors. Elife 2:e00726. doi: 10.7554/eLife.00726 PubMedCentralPubMedGoogle Scholar
  8. 8.
    Landry JP, Fei Y, Zhu X (2012) Simultaneous measurement of 10,000 protein-ligand affinity constants using microarray-based kinetic constant assays. Assay Drug Dev Technol 10(3):250–259. doi: 10.1089/adt.2011.0406 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Liu S, Zhu J, He L, Dai J, Lu H, Wu L, Jin K, Yang G, Zhu H (2014) Label-free, real-time detection of the dynamic processes of protein degradation using oblique-incidence reflectivity difference method. Appl Phys Lett 104(16):163701. doi: 10.1063/1.4873676 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Lu H, Wen J, Wang X, Yuan K, Li W, Lu H, Zhou Y, Jin K, Ruan K, Yang G (2010) Detection of the specific binding on protein microarrays by oblique-incidence reflectivity difference method. J Optic 12(9):095301. doi: 10.1088/2040-8978/12/9/095301 CrossRefGoogle Scholar
  11. 11.
    Sun Y-S, Landry JP, Fei Y, Zhu X, Luo J, Wang X, Lam K (2008) Effect of Fluorescently Labeling Protein Probes on Kinetics of Protein-Ligand Reactions. Langmuir 24(23):13399–13405. doi: 10.1021/la802097z CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Xu W, Heng L, Juan W, Kun Y, Hui-Bin L, Kui-Juan J, Yue-Liang Z, Guo-Zhen Y (2010) Label-free and high-throughput detection of protein microarrays by oblique-incidence reflectivity difference method. Chin Phys Lett 27(10):107801CrossRefGoogle Scholar
  13. 13.
    Chen F, Lu H, Chen Z, Zhao T, Yang G (2001) Optical real-time monitoring of the laser molecular-beam epitaxial growth of perovskite oxide thin films by an oblique-incidence reflectance-difference technique. J Opt Soc Am B 18(7):1031–1035. doi: 10.1364/JOSAB.19.001218 CrossRefGoogle Scholar
  14. 14.
    Zhu X-D (2004) Oblique-incidence optical reflectivity difference from a rough film of crystalline material. Phys Rev B 69(11):115407. doi: 10.1103/PhysRevB.69.115407 CrossRefGoogle Scholar
  15. 15.
    Chen F, Lu H, Zhao T, K-j J, Chen Z, Yang G-Z (2000) Real-time optical monitoring of the heteroepitaxy of oxides by an oblique-incidence reflectance difference technique. Phys Rev B 61(15):10404. doi: 10.1103/PhysRevB.61.10404 CrossRefGoogle Scholar
  16. 16.
    Zhu X-D (2006) Comparison of two optical techniques for label-free detection of biomolecular microarrays on solids. Optic Commun 259(2):751–753. doi: 10.1016/j.optcom.2005.09.079 CrossRefGoogle Scholar
  17. 17.
    Bradley A, Cai WW (2000) Chemically modified nucleic acids and methods for coupling nucleic acids to solid support. Google Patents, Patent CA2326684C.Google Scholar
  18. 18.
    Gershon D (2002) Microarray technology: an array of opportunities. Nature 416(6883):885–891. doi: 10.1038/416885a CrossRefPubMedGoogle Scholar
  19. 19.
    Hu S-H, Xie Z, Blackshaw S, Qian J, Zhu H (2011) Characterization of protein–DNA interactions using protein microarrays. Cold Spring Harbor Protocols 2011 (5). doi:10.1101/pdb.prot5614Google Scholar
  20. 20.
    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403CrossRefGoogle Scholar
  21. 21.
    Myszka DG (2000) Kinetic, equilibrium, and thermodynamic analysis of macromolecular interactions with BIACORE. Methods Enzymol 323:325–340. doi: 10.1016/S0076-6879(00)23372-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Pharmacology & Molecular ScienceJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations