Skip to main content

Digital Holographic Imaging for Label-Free Phenotypic Profiling, Cytotoxicity, and Chloride Channels Target Screening

  • Protocol
Book cover Label-Free Biosensor Methods in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Cellular assays using label-free Digital Holographic Microscopy (DHM) have been previously validated for cell viability assays in a drug screening context. Our automated DHM system allows performing fast and cost-effective screening assays for a wide range of applications for monitoring cell morphological changes and cell movements upon interaction with interfering compounds. In addition to these classic phenotypic assays, it has been demonstrated that target-based cellular assays can also be addressed by DHM for therapeutically relevant chloride channel receptors. Our DH-imaging (DHI) technology, potentially scalable for screening by imaging approaches in a high-throughput manner can also deliver highly informative data through long term experiments. Three examples of phenotypic screens are detailed in the present chapter: a label-free profiling approach, a cell proliferation assay, and methods for monitoring the activity of the GABAA chloride channel receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bickle M (2010) The beautiful cell: high-content screening in drug discovery. Anal Bioanal Chem 398(1):219–226. doi:10.1007/s00216-010-3788-3

    Article  CAS  PubMed  Google Scholar 

  2. McCoy JP Jr (2011) High-content screening: getting more from less. Nat Methods 8(5):390–391. doi:10.1038/nmeth.1599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kell DB (2013) Finding novel pharmaceuticals in the systems biology era using multiple effective drug targets, phenotypic screening and knowledge of transporters: where drug discovery went wrong and how to fix it. FEBS J 280(23):5957–5980. doi:10.1111/febs.12268

    Article  CAS  PubMed  Google Scholar 

  4. Wagner M, Weber P, Bruns T, Strauss WS, Wittig R, Schneckenburger H (2010) Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection. Int J Mol Sci 11(3):956–966. doi:10.3390/ijms11030956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Schneckenburger H, Weber P, Wagner M, Schickinger S, Richter V, Bruns T, Strauss WS, Wittig R (2012) Light exposure and cell viability in fluorescence microscopy. J Microsc 245(3):311–318. doi:10.1111/j.1365-2818.2011.03576.x

    Article  CAS  PubMed  Google Scholar 

  6. Le Harzic R, Riemann I, König K, Wüllner C, Donitzky C (2007) Influence of femtosecond laser pulse irradiation on the viability of cells at 1035, 517, and 345 nm. J Appl Phys 102(11):114701. doi:10.1063/1.2818107

    Article  Google Scholar 

  7. Graves R (2011) Incorporating transmitted light modalities into high-content analysis assays. In: Mayr LM, Cooper M (eds) Label-free technologies for drug discovery. Wiley, Chichester, West Sussex, pp 101–110

    Chapter  Google Scholar 

  8. Kuhn J, Shaffer E, Mena J, Breton B, Parent J, Rappaz B, Chambon M, Emery Y, Magistretti P, Depeursinge C, Marquet P, Turcatti G (2013) Label-free cytotoxicity screening assay by digital holographic microscopy. Assay Drug Dev Technol 11(2):101–107. doi:10.1089/adt.2012.476

    Article  PubMed Central  PubMed  Google Scholar 

  9. Rappaz B, Breton B, Shaffer E, Turcatti G (2014) Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening. Comb Chem High Throughput Screen 17(1):80–88, CCHTS-EPUB-56550

    Article  CAS  PubMed  Google Scholar 

  10. Marquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, Depeursinge C (2005) Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt Lett 30(5):468–470. doi:10.1364/OL.30.000468

    Article  PubMed  Google Scholar 

  11. Moon I, Daneshpanah M, Anand A, Javidi B (2011) Cell identification computational 3-D holographic microscopy. Opt Photon News 22(6):18–23. doi:10.1364/OPN.22.6.000018

    Article  Google Scholar 

  12. Rappaz B, Barbul A, Emery Y, Korenstein R, Depeursinge C, Magistretti PJ, Marquet P (2008) Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer. Cytometry A 73(10):895–903. doi:10.1002/cyto.a.20605

    Article  PubMed  Google Scholar 

  13. Rappaz B, Cano E, Colomb T, Kuhn J, Depeursinge C, Simanis V, Magistretti PJ, Marquet P (2009) Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. J Biomed Opt 14(3):034049. doi:10.1117/1.3147385

    Article  PubMed  Google Scholar 

  14. Jourdain P, Boss D, Rappaz B, Moratal C, Hernandez MC, Depeursinge C, Magistretti PJ, Marquet P (2012) Simultaneous optical recording in multiple cells by digital holographic microscopy of chloride current associated to activation of the ligand-gated chloride channel GABA(A) receptor. PLoS One 7(12):e51041. doi:10.1371/journal.pone.0051041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jourdain P, Becq F, Lengacher S, Boinot C, Magistretti PJ, Marquet P (2014) The human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy. J Cell Sci 127(Pt 3):546–556. doi:10.1242/jcs.133629

    Article  CAS  PubMed  Google Scholar 

  16. Colomb T, Pavillon N, Kuhn J, Cuche E, Depeursinge C, Emery Y (2010) Extended depth-of-focus by digital holographic microscopy. Opt Lett 35(11):1840–1842. doi:10.1364/OL.35.001840

    Article  PubMed  Google Scholar 

  17. Ferraro P, Grilli S, Alfieri D, Nicola SD, Finizio A, Pierattini G, Javidi B, Coppola G, Striano V (2005) Extended focused image in microscopy by digital Holography. Opt Express 13(18):6738–6749. doi:10.1364/OPEX.13.006738

    Article  PubMed  Google Scholar 

  18. Jourdain P, Pavillon N, Moratal C, Boss D, Rappaz B, Depeursinge C, Marquet P, Magistretti PJ (2011) Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study. J Neurosci 31(33):11846–11854, 31/33/11846

    Article  CAS  PubMed  Google Scholar 

  19. Pavillon N, Kuhn J, Moratal C, Jourdain P, Depeursinge C, Magistretti PJ, Marquet P (2012) Early cell death detection with digital holographic microscopy. PLoS One 7(1):e30912. doi:10.1371/journal.pone.0030912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100, gb-2006-7-10-r100

    Article  PubMed Central  PubMed  Google Scholar 

  21. Jones TR, Kang IH, Wheeler DB, Lindquist RA, Papallo A, Sabatini DM, Golland P, Carpenter AE (2008) Cell profiler analyst: data exploration and analysis software for complex image-based screens. BMC Bioinformatics 9:482. doi:10.1186/1471-2105-9-482

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhang J-H, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73. doi:10.1177/108705719900400206

    Article  PubMed  Google Scholar 

  23. Kozak K, Csucs G (2010) Kernelized Z′ factor in multiparametric screening technology. RNA Biol 7(5):615–620. doi:10.4161/rna.7.5.13239

    Article  CAS  PubMed  Google Scholar 

  24. Zhang YW, Shi J, Li YJ, Wei L (2009) Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp (Warsz) 57(6):435–445. doi:10.1007/s00005-009-0051-8

    Article  CAS  Google Scholar 

  25. Skoufias DA, Wilson L (1992) Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Biochemistry 31(3):738–746

    Article  CAS  PubMed  Google Scholar 

  26. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5):362–374. doi:10.1038/nrc1075

    Article  CAS  PubMed  Google Scholar 

  27. Hayot C, Debeir O, Van Ham P, Van Damme M, Kiss R, Decaestecker C (2006) Characterization of the activities of actin-affecting drugs on tumor cell migration. Toxicol Appl Pharmacol 211(1):30–40. doi:10.1016/j.taap.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  28. Godman G, Woda B, Kolberg R, Berl S (1980) Redistribution of contractile and cytoskeletal components induced by cytochalasin. II. In HeLa and HEp2 cells. Eur J Cell Biol 22(2):745–754

    CAS  PubMed  Google Scholar 

  29. Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4:21. doi:10.1186/1472-6750-4-21

    Article  PubMed Central  PubMed  Google Scholar 

  30. Harrington WN, Godman GC (1980) A selective inhibitor of cell proliferation from normal serum. Proc Natl Acad Sci U S A 77(1):423–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Godman G, Woda B, Kolberg R, Berl S (1980) Redistribution of contractile and cytoskeletal components induced by cytochalasin. I. In Hmf cells, a nontransformed fibroblastoid line. Eur J Cell Biol 22(2):733–744

    CAS  PubMed  Google Scholar 

  32. Rappaz B, Marquet P, Cuche E, Emery Y, Depeursinge C, Magistretti P (2005) Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt Express 13(23):9361–9373. doi:10.1364/OPEX.13.009361

    Article  PubMed  Google Scholar 

  33. Karobath M, Lippitsch M (1979) THIP and isoguvacine are partial agonists of GABA-stimulated benzodiazepine receptor binding. Eur J Pharmacol 58(4):485–488

    Article  CAS  PubMed  Google Scholar 

  34. Mortensen M, Kristiansen U, Ebert B, Frolund B, Krogsgaard-Larsen P, Smart TG (2004) Activation of single heteromeric GABA(A) receptor ion channels by full and partial agonists. J Physiol 557(Pt 2):389–413. doi:10.1113/jphysiol.2003.054734

    Article  CAS  PubMed  Google Scholar 

  35. Mortensen M, Wafford KA, Wingrove P, Ebert B (2003) Pharmacology of GABAA receptors exhibiting different levels of spontaneous activity. Eur J Pharmacol 476(1–2):17–24. doi:10.1016/S0014-2999(03)02125-3

    Article  CAS  PubMed  Google Scholar 

  36. Hansen SL, Ebert B, Fjalland B, Kristiansen U (2001) Effects of GABA(A) receptor partial agonists in primary cultures of cerebellar granule neurons and cerebral cortical neurons reflect different receptor subunit compositions. Br J Pharmacol 133(4):539–549. doi:10.1038/sj.bjp.0704121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the CTI program (grant No. 12669.1 PFLS-LS). The authors thank the staff of Lyncée Tec SA for their technical support on the DHM imaging system, Sandra Borel and Nathalie Ballanfat from the BSF-EPFL for cell preparation and culture, Dr. Pascal Jourdain for electrophysiology experiments, and Dr. Marc Chambon for fruitful discussions and pertinent comments about the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Turcatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rappaz, B., Kuttler, F., Breton, B., Turcatti, G. (2015). Digital Holographic Imaging for Label-Free Phenotypic Profiling, Cytotoxicity, and Chloride Channels Target Screening. In: Fang, Y. (eds) Label-Free Biosensor Methods in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2617-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2617-6_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2616-9

  • Online ISBN: 978-1-4939-2617-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics