Profiling Sodium-Dependent Phosphate Transporter NaPi-IIb with Resonant Waveguide Grating Biosensor

Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

The development of label-free resonant waveguide grating (RWG) technology in microplate format in the last decade has stimulated interests from academic and industrial scientists, leading to evaluation of the technology in a broad range of biochemical and cell-based assays. In cellular assays the plasma membrane and immediate cellular volume are within the sensing region from the surface of the RWG biosensor. Any rearrangement of intracellular proteins or molecules in this region of the cells, termed dynamic mass redistribution (DMR), can be detected by the RWG biosensor. The biosensor monitors a global cellular output that can amplify the activity of a few active receptors into a measurable response; therefore, it is a useful tool for measuring physiological responses of live cells.

Most membrane transporter studies still rely on measurement of the accumulation of radiolabeled substrates or on using electrophysiology techniques. Thus, there is an unmet need for a homogeneous and high-throughput assay for transporter research. The biological process of transporting substrates across the plasma membrane of cells and their subsequent interactions with intracellular proteins or molecules presents an ideal case study for the RWG biosensor. In this report, we describe a detailed protocol using an RWG biosensor to monitor DMR signals in cells following the activation of the type IIb sodium-dependent phosphate transporter (NaPi-IIb) in a homogeneous, 384-well assay format. Results suggest that the DMR signals could serve as novel and quantifiable physiological responses of activated NaPi-IIb transporters and the technology can be used to query transporter pharmacology.

Key words

Cellular assay Dynamic mass redistribution (DMR) High-throughput Label-free NaPi-IIb Resonant waveguide grating (RWG) Transporter 

References

  1. 1.
    Williams JB, Mallorga PJ, Lemaire W, Williams DL, Na S, Patel S, Conn PJ, Pettibone DJ, Austin C, Sur C (2003) Development of a scintillation proximity assay for analysis of Na+/Cl–dependent neurotransmitter transporter activity. Anal Biochem 321:31–37. doi:10.1016/S0003-2697(03)00431-7 CrossRefPubMedGoogle Scholar
  2. 2.
    Fang Y (2006) Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev Technol 4:583–595. doi:10.1089/adt.2006.4.583 CrossRefPubMedGoogle Scholar
  3. 3.
    Fang Y, Ferrie AM, Li G (2006) Cellular functions of cholesterol probed with optical biosensors. Biochim Biophys Acta 1763:254–261. doi:10.1016/j.bbamcr.2006.01.006 CrossRefPubMedGoogle Scholar
  4. 4.
    Schafer DA (2002) Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol 14:76–81. doi:10.1016/S0955-0674(01)00297-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Stamnes M (2002) Regulating the actin cytoskeleton during vesicular transport. Curr Opin Cell Biol 14:428–433. doi:10.1016/S0955-0674(02)00349-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Janmey PA (1998) The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 78:763–781PubMedGoogle Scholar
  7. 7.
    Fang Y, Li G, Peng J (2005) Optical biosensor provides insights for bradykinin B2 receptor signaling in A431 cells. FEBS Lett 579:6365–6374. doi:10.1016/j.febslet.2005.10.019 CrossRefPubMedGoogle Scholar
  8. 8.
    Lee PH, Gao A, van Staden C, Ly J, Salon J, Xu A, Fang Y, Verkleeren R (2008) Evaluation of dynamic mass redistribution technology for pharmacological studies of recombinant and endogenously expressed G protein-coupled receptors. Assay Drug Dev Technol 6:83–94. doi:10.1089/adt.2007.126 CrossRefPubMedGoogle Scholar
  9. 9.
    Virkki LV, Biber J, Murer H, Forster IC (2007) Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol 293:F643–F654. doi:10.1152/ajprenal.00228.2007 CrossRefPubMedGoogle Scholar
  10. 10.
    Wong S-H, Gao A, Ward S, Henley C, Lee PH (2012) Development of a label-free assay for sodium-dependent phosphate transporter NaPi-IIb. J Biomol Screen 17:829–834. doi:10.1177/1087057112442961 CrossRefPubMedGoogle Scholar
  11. 11.
    Matsuo A, Negoro T, Seo T, Kitao Y, Shindo M, Segawa H, Miyamoto K (2005) Inhibitory effect of JTP-59557, a new triazole derivative, on intestinal phosphate transport in vitro and in vivo. Eur J Pharmacol 517:111–119. doi:10.1016/j.ejphar.2005.05.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Molecular Structure & CharacterizationAmgen Inc.,Thousand OaksUSA
  2. 2.Corning Life Science, Corning IncorporatedCorningUSA

Personalised recommendations