Abstract
4D myocardial wall motion analysis (3D structure over time) during early embryonic stages of chick heart development provides a comprehensive view to characterize the biomechanical environment of cardiac growth. Myocardial wall strains, velocity, and area shortening over the cardiac cycle are common wall motion assessments and can be accurately measured from 4D datasets. Here, we describe how to employ a variety of image modalities (optical, ultrasound, and optical coherence tomography imaging) and analysis techniques to extract quantitative measures of myocardial wall motion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Clark EB, Hu N, Frommelt P et al (1989) Effect of increased pressure on ventricular growth in stage 21 chick embryos. Am J Physiol 257:H55–H61
Fishman MC, Stainier DY (1994) Cardiovascular development. Prospects for a genetic approach. Circ Res 74:757–763
Groenendijk BC, Hierck BP, Vrolijk J et al (2005) Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo. Circ Res 96:1291–1298
Hove JR, Koster RW, Forouhar AS et al (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177
Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92
Hogers B, DeRuiter MC, Gittenberger-de Groot AC et al (1997) Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 80:473–481
Gittenberger-de Groot AC, Bartelings MM, Deruiter MC et al (2005) Basics of cardiac development for the understanding of congenital heart malformations. Pediatr Res 57:169–176
Keller BB, Hu N, Clark EB (1990) Correlation of ventricular area, perimeter, and conotruncal diameter with ventricular mass and function in the chick embryo from stages 12 to 24. Circ Res 66:109–114
Lin IE, Taber LA (1994) Mechanical effects of looping in the embryonic chick heart. J Biomech 27:311–312
Keller BB, Yoshigi M, Tinney JP (1997) Ventricular-vascular uncoupling by acute conotruncal occlusion in the stage 21 chick embryo. Am J Physiol Heart Circ Physiol 273:H2861–H2866
Stekelenburg-De Vos S, Steendijik P, Ursem NTC et al (2005) Systolic and diastolic ventricular function assessed by pressure-volume loops in the stage 21 venous clipped chick embryo. Pediatr Res 57:16–21
Keller BB, Hu N, Serrino PJ et al (1991) Ventricular pressure-area loop characteristics in the stage 16 to 24 chick embryo. Circ Res 68:226–231
Faber JJ, Green TJ, Thornburg KL (1974) Embryonic stroke volume and cardiac output in the chick. Dev Biol 41:14–21
Jenkins MW, Chughtai OQ, Basavanhally AN et al (2007) In vivo gated 4-D imaging of the embryonic heart using optical coherence tomography. J Biomed Opt 12(3):030505
Li P, Yin X, Shi L et al (2011) Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography. IEEE Trans Biomed Eng 58:2333–2338
Li P, Liu A, Shi L et al (2011) Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography. Phys Med Biol 56:7081–7092
Liebling M, Forouhar AS, Gharib M et al (2005) Four-dimensional cardiac imaging in living embryos via post-acquisition synchronization of nongated slice sequences. J Biomed Opt 10(5):054001
Liebling M, Forouhar AS, Gharib M et al (2005) Wavelet-based synchronization of nongated confocal microscopy data for 4-D imaging of the embryonic heart. Proc SPIE 5914:591409
Liu A, Wang R, Thornburg KL et al (2009) Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart. J Biomed Opt 14:044020
Yin X, Liu A, Thornburg K et al (2012) Extracting cardiac shapes and motion of the chick embryo heart outflow tract from four-dimensional optical coherence tomography images. J Biomed Opt 17(9):096005
Garita B, Jenkins MW, Han M et al (2011) Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. Am J Physiol Heart Circ Physiol 300:H879–H891
Liu A, Yin X, Shi L et al (2012) Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling. PLoS One 7(7):e40869
Acknowledgement
This work was supported by NIH grant R01 HL094570 and NSF grant DBI 1052688.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this protocol
Cite this protocol
Midgett, M., Rugonyi, S. (2015). Analysis of 4D Myocardial Wall Motion During Early Stages of Chick Heart Development. In: Skuse, G., Ferran, M. (eds) Cardiomyocytes. Methods in Molecular Biology, vol 1299. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2572-8_16
Download citation
DOI: https://doi.org/10.1007/978-1-4939-2572-8_16
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-2571-1
Online ISBN: 978-1-4939-2572-8
eBook Packages: Springer Protocols