Skip to main content

Analysis of 4D Myocardial Wall Motion During Early Stages of Chick Heart Development

  • Protocol
Cardiomyocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1299))

  • 1722 Accesses

Abstract

4D myocardial wall motion analysis (3D structure over time) during early embryonic stages of chick heart development provides a comprehensive view to characterize the biomechanical environment of cardiac growth. Myocardial wall strains, velocity, and area shortening over the cardiac cycle are common wall motion assessments and can be accurately measured from 4D datasets. Here, we describe how to employ a variety of image modalities (optical, ultrasound, and optical coherence tomography imaging) and analysis techniques to extract quantitative measures of myocardial wall motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clark EB, Hu N, Frommelt P et al (1989) Effect of increased pressure on ventricular growth in stage 21 chick embryos. Am J Physiol 257:H55–H61

    CAS  PubMed  Google Scholar 

  2. Fishman MC, Stainier DY (1994) Cardiovascular development. Prospects for a genetic approach. Circ Res 74:757–763

    Article  CAS  PubMed  Google Scholar 

  3. Groenendijk BC, Hierck BP, Vrolijk J et al (2005) Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo. Circ Res 96:1291–1298

    Article  CAS  PubMed  Google Scholar 

  4. Hove JR, Koster RW, Forouhar AS et al (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177

    Article  CAS  PubMed  Google Scholar 

  5. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  6. Hogers B, DeRuiter MC, Gittenberger-de Groot AC et al (1997) Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 80:473–481

    Article  CAS  PubMed  Google Scholar 

  7. Gittenberger-de Groot AC, Bartelings MM, Deruiter MC et al (2005) Basics of cardiac development for the understanding of congenital heart malformations. Pediatr Res 57:169–176

    Article  PubMed  Google Scholar 

  8. Keller BB, Hu N, Clark EB (1990) Correlation of ventricular area, perimeter, and conotruncal diameter with ventricular mass and function in the chick embryo from stages 12 to 24. Circ Res 66:109–114

    Article  CAS  PubMed  Google Scholar 

  9. Lin IE, Taber LA (1994) Mechanical effects of looping in the embryonic chick heart. J Biomech 27:311–312

    Article  CAS  PubMed  Google Scholar 

  10. Keller BB, Yoshigi M, Tinney JP (1997) Ventricular-vascular uncoupling by acute conotruncal occlusion in the stage 21 chick embryo. Am J Physiol Heart Circ Physiol 273:H2861–H2866

    CAS  Google Scholar 

  11. Stekelenburg-De Vos S, Steendijik P, Ursem NTC et al (2005) Systolic and diastolic ventricular function assessed by pressure-volume loops in the stage 21 venous clipped chick embryo. Pediatr Res 57:16–21

    Article  PubMed  Google Scholar 

  12. Keller BB, Hu N, Serrino PJ et al (1991) Ventricular pressure-area loop characteristics in the stage 16 to 24 chick embryo. Circ Res 68:226–231

    Article  CAS  PubMed  Google Scholar 

  13. Faber JJ, Green TJ, Thornburg KL (1974) Embryonic stroke volume and cardiac output in the chick. Dev Biol 41:14–21

    Article  CAS  PubMed  Google Scholar 

  14. Jenkins MW, Chughtai OQ, Basavanhally AN et al (2007) In vivo gated 4-D imaging of the embryonic heart using optical coherence tomography. J Biomed Opt 12(3):030505

    Article  PubMed  Google Scholar 

  15. Li P, Yin X, Shi L et al (2011) Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography. IEEE Trans Biomed Eng 58:2333–2338

    Article  Google Scholar 

  16. Li P, Liu A, Shi L et al (2011) Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography. Phys Med Biol 56:7081–7092

    Article  PubMed Central  PubMed  Google Scholar 

  17. Liebling M, Forouhar AS, Gharib M et al (2005) Four-dimensional cardiac imaging in living embryos via post-acquisition synchronization of nongated slice sequences. J Biomed Opt 10(5):054001

    Article  PubMed  Google Scholar 

  18. Liebling M, Forouhar AS, Gharib M et al (2005) Wavelet-based synchronization of nongated confocal microscopy data for 4-D imaging of the embryonic heart. Proc SPIE 5914:591409

    Article  Google Scholar 

  19. Liu A, Wang R, Thornburg KL et al (2009) Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart. J Biomed Opt 14:044020

    Article  PubMed  Google Scholar 

  20. Yin X, Liu A, Thornburg K et al (2012) Extracting cardiac shapes and motion of the chick embryo heart outflow tract from four-dimensional optical coherence tomography images. J Biomed Opt 17(9):096005

    Article  PubMed Central  Google Scholar 

  21. Garita B, Jenkins MW, Han M et al (2011) Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. Am J Physiol Heart Circ Physiol 300:H879–H891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Liu A, Yin X, Shi L et al (2012) Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling. PLoS One 7(7):e40869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant R01 HL094570 and NSF grant DBI 1052688.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Rugonyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Midgett, M., Rugonyi, S. (2015). Analysis of 4D Myocardial Wall Motion During Early Stages of Chick Heart Development. In: Skuse, G., Ferran, M. (eds) Cardiomyocytes. Methods in Molecular Biology, vol 1299. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2572-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2572-8_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2571-1

  • Online ISBN: 978-1-4939-2572-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics