Advertisement

Rab GTPases pp 271-281 | Cite as

Identification of the Rab5 Binding Site in p110β: Assays for PI3Kβ Binding to Rab5

  • Rachel S. Salamon
  • Hashem A. Dbouk
  • Denise Collado
  • Jaclyn Lopiccolo
  • Anne R. Bresnick
  • Jonthan M. Backer
Part of the Methods in Molecular Biology book series (MIMB, volume 1298)

Abstract

Isoform-specific signaling by Class IA PI 3-kinases depends in part on the interactions between distinct catalytic subunits and upstream regulatory proteins. From among the class IA catalytic subunits (p110α, p110β, and p110δ), p110β has unique properties. Unlike the other family members, p110β directly binds to Gβγ subunits, downstream from activated G-protein coupled receptors, and to activated Rab5. Furthermore, the Ras-binding domain (RBD) of p110β binds to Rac and Cdc42 but not to Ras. Defining mutations that specifically disrupt these regulatory interactions is critical for defining their role in p110β signaling. This chapter describes the approach that was used to identify the Rab5 binding site in p110β, and discusses methods for the analysis of p110β-Rab5 interactions.

Key words

PIK3CB Class IA PI 3-kinase p110beta Rab5 Lipid kinases Phosphoinositide 3-kinases Small GTPases 

References

  1. 1.
    Maier U, Babich A, Nürnberg B (1999) Roles of non-catalytic subunits in Gβγ-induced activation of class I phosphoinositide 3-kinase isoforms beta and gamma. J Biol Chem 274(41):29311–29317CrossRefPubMedGoogle Scholar
  2. 2.
    Dbouk HA, Vadas O, Shymanets A, Burke JE, Salamon RS, Khalil BD, Barrett MO, Waldo GL, Surve C, Hsueh C, Perisic O, Harteneck C, Shepherd PR, Harden TK, Smrcka AV, Taussig R, Bresnick AR, Nurnberg B, Williams RL, Backer JM (2012) G protein-coupled receptor-mediated activation of p110beta by Gbetagamma is required for cellular transformation and invasiveness. Sci Signal 5(253):ra89. doi: 10.1126/scisignal.2003264 PubMedCentralPubMedGoogle Scholar
  3. 3.
    Fritsch R, de Krijger I, Fritsch K, George R, Reason B, Kumar MS, Diefenbacher M, Stamp G, Downward J (2013) RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell 153(5):1050–1063. doi: 10.1016/j.cell.2013.04.031 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1(4):249–252. doi: 10.1038/12075 CrossRefPubMedGoogle Scholar
  5. 5.
    Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117CrossRefPubMedGoogle Scholar
  6. 6.
    Horiuchi H, Lippe R, McBride HM, Rubino M, Woodman P, Stenmark H, Rybin V, Wilm M, Ashman K, Mann M, Zerial M (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90(6):1149–1159CrossRefPubMedGoogle Scholar
  7. 7.
    Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394(6692):494–498. doi: 10.1038/28879 CrossRefPubMedGoogle Scholar
  8. 8.
    Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M, Hoflack B, Zerial M (2000) Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 151(3):601–612CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton RG, Zerial M (2004) APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116(3):445–456CrossRefPubMedGoogle Scholar
  10. 10.
    Kurosu H, Katada T (2001) Association of phosphatidylinositol 3-kinase composed of p110β-catalytic and p85-regulatory subunits with the small GTPase Rab5. J Biochem 130(1):73–78CrossRefPubMedGoogle Scholar
  11. 11.
    Dbouk HA, Pang H, Fiser A, Backer JM (2010) A biochemical mechanism for the oncogenic potential of the p110beta catalytic subunit of phosphoinositide 3-kinase. Proc Natl Acad Sci U S A 107(46):19897–19902. doi: 10.1073/pnas.1008739107 CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Chamberlain MD, Anderson DH (2005) Measurement of the interaction of the p85alpha subunit of phosphatidylinositol 3-kinase with Rab5. Methods Enzymol 403:541–552. doi: 10.1016/S0076-6879(05)03047-8 CrossRefPubMedGoogle Scholar
  13. 13.
    Dou Z, Pan JA, Dbouk HA, Ballou LM, DeLeon JL, Fan Y, Chen JS, Liang Z, Li G, Backer JM, Lin RZ, Zong WX (2013) Class IA PI3K p110beta subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol Cell 50(1):29–42. doi: 10.1016/j.molcel.2013.01.022 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Hadano S, Ikeda JE (2005) Purification and functional analyses of ALS2 and its homologue. Methods Enzymol 403:310–321. doi: 10.1016/S0076-6879(05)03026-0 CrossRefPubMedGoogle Scholar
  15. 15.
    Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM (1998) Regulation of the p85/p110 phosphatidylinositol 3’-kinase: stabilization and inhibition of the p110-alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 18:1379–1387PubMedCentralPubMedGoogle Scholar
  16. 16.
    Vadas O, Dbouk HA, Shymanets A, Perisic O, Burke JE, Abi Saab WF, Khalil BD, Harteneck C, Bresnick AR, Nurnberg B, Backer JM, Williams RL (2013) Molecular determinants of PI3Kgamma-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc Natl Acad Sci U S A 110(47):18862–18867. doi: 10.1073/pnas.1304801110 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Hubbard SJ, Thornton JM (1993) NACCESS. Dept. of Biochemistry and Molecular Biology, University College London, LondonGoogle Scholar
  18. 18.
    Zhang X, Vadas O, Perisic O, Anderson KE, Clark J, Hawkins PT, Stephens LR, Williams RL (2011) Structure of lipid kinase p110beta/p85beta elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol Cell 41(5):567–578. doi: 10.1016/j.molcel.2011.01.026 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rachel S. Salamon
    • 1
  • Hashem A. Dbouk
    • 1
  • Denise Collado
    • 1
  • Jaclyn Lopiccolo
    • 1
  • Anne R. Bresnick
    • 3
  • Jonthan M. Backer
    • 1
    • 2
  1. 1.Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Department of BiochemistryAlbert Einstein College of MedicineBronxUSA
  3. 3.Department of BiochemistryAlbert Einstein College of MedicineBronxUSA

Personalised recommendations