Skip to main content

Characterization of the Role Rab25 in Energy Metabolism and Cancer Using Extracellular Flux Analysis and Material Balance

  • Protocol
Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1298))

Abstract

Rab25, by altering trafficking of critical cellular resources, influences cell metabolism and survival during stress conditions. Overall, perturbations in the vesicular trafficking machinery change cellular bioenergetics that can be directly measured in real time as Oxygen Consumption Rate, OCR (mitochondrial respiration) and Extracellular Acidification Rate, ECAR (glycolysis) by an extracellular flux analyzer (XF96, Seahorse Biosciences, MA). Additionally, overall turnover of glucose, lactate, as well as glutamine and glutamate can be measured biochemically using the YSI2900 Biochemistry Analyzer (YSI Incorporated, Life Sciences, OH). A combination of these two methods allows a precise and quantitative approach to interrogate the role of Rab25 as well as other Rab GTPases in central carbon energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altenberg B, Greulich KO (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84(6):1014–1020. doi:10.1016/j.ygeno.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  2. Tu SH, Chang CC, Chen CS, Tam KW, Wang YJ, Lee CH, Lin HW, Cheng TC, Huang CS, Chu JS, Shih NY, Chen LC, Leu SJ, Ho YS, Wu CH (2010) Increased expression of enolase alpha in human breast cancer confers tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat 121(3):539–553. doi:10.1007/s10549-009-0492-0

    Article  CAS  PubMed  Google Scholar 

  3. Geiger T, Madden SF, Gallagher WM, Cox J, Mann M (2012) Proteomic portrait of human breast cancer progression identifies novel prognostic markers. Cancer Res 72(9):2428–2439. doi:10.1158/0008-5472.CAN-11-3711

    Article  CAS  PubMed  Google Scholar 

  4. Jerby L, Wolf L, Denkert C, Stein GY, Hilvo M, Oresic M, Geiger T, Ruppin E (2012) Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Res 72(22):5712–5720. doi:10.1158/0008-5472.CAN-12-2215

    Article  CAS  PubMed  Google Scholar 

  5. Dennison JB, Molina JR, Mitra S, Gonzalez-Angulo AM, Balko JM, Kuba MG, Sanders ME, Pinto JA, Gomez HL, Arteaga CL, Brown RE, Mills GB (2013) Lactate dehydrogenase B: a metabolic marker of response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res 19(13):3703–3713. doi:10.1158/1078-0432.CCR-13-0623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cormont M, Le Marchand-Brustel Y (2001) The role of small G-proteins in the regulation of glucose transport (review). Mol Mem Biol 18(3):213–220

    Article  CAS  Google Scholar 

  7. Handley MT, Morris-Rosendahl DJ, Brown S, Macdonald F, Hardy C, Bem D, Carpanini SM, Borck G, Martorell L, Izzi C, Faravelli F, Accorsi P, Pinelli L, Basel-Vanagaite L, Peretz G, Abdel-Salam GM, Zaki MS, Jansen A, Mowat D, Glass I, Stewart H, Mancini G, Lederer D, Roscioli T, Giuliano F, Plomp AS, Rolfs A, Graham JM, Seemanova E, Poo P, Garcia-Cazorla A, Edery P, Jackson IJ, Maher ER, Aligianis IA (2013) Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome. Hum Mut 34(5):686–696. doi:10.1002/humu.22296

    Article  CAS  PubMed  Google Scholar 

  8. Honscher C, Mari M, Auffarth K, Bohnert M, Griffith J, Geerts W, van der Laan M, Cabrera M, Reggiori F, Ungermann C (2014) Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev Cell 30(1):86–94. doi:10.1016/j.devcel.2014.06.006

    Article  PubMed  Google Scholar 

  9. Shreya Mitra GBM (2013) Aberrant vesicular trafficking contributes to altered polarity and metabolism in cancer, vol ISBN 978-1-4614-6527, Vesicle trafficking in cancer. Springer, New York, NY

    Google Scholar 

  10. Mosesson Y, Mills GB, Yarden Y (2008) Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 8(11):835–850. doi:10.1038/nrc2521

    Article  CAS  PubMed  Google Scholar 

  11. Mitra S, Cheng KW, Mills GB (2011) Rab GTPases implicated in inherited and acquired disorders. Seminars Cell Dev Biol 22(1):57–68. doi:10.1016/j.semcdb.2010.12.005

    Article  CAS  Google Scholar 

  12. Cheng KW, Agarwal R, Mitra S, Lee JS, Carey M, Gray JW, Mills GB (2012) Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress. EMBO Mol Med 4(2):125–141. doi:10.1002/emmm.201100193

    Article  PubMed Central  PubMed  Google Scholar 

  13. Liu Y, Tao X, Jia L, Cheng KW, Lu Y, Yu Y, Feng Y (2012) Knockdown of RAB25 promotes autophagy and inhibits cell growth in ovarian cancer cells. Mol Med Rep 6(5):1006–1012. doi:10.3892/mmr.2012.1052

    CAS  PubMed  Google Scholar 

  14. Agarwal R, Jurisica I, Mills GB, Cheng KW (2009) The emerging role of the RAB25 small GTPase in cancer. Traffic 10(11):1561–1568. doi:10.1111/j.1600-0854.2009.00969.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Casanova JE, Wang X, Kumar R, Bhartur SG, Navarre J, Woodrum JE, Altschuler Y, Ray GS, Goldenring JR (1999) Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol Biol Cell 10(1):47–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Goldenring JR, Aron LM, Lapierre LA, Navarre J, Casanova JE (2001) Expression and properties of Rab25 in polarized Madin-Darby canine kidney cells. Methods Enzymol 329:225–234

    Article  CAS  PubMed  Google Scholar 

  17. Goldenring JR, Shen KR, Vaughan HD, Modlin IM (1993) Identification of a small GTP-binding protein, Rab25, expressed in the gastrointestinal mucosa, kidney, and lung. J Biol Chem 268(25):18419–18422

    CAS  PubMed  Google Scholar 

  18. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. doi:10.1126/science.1160809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism 7(1):11–20. doi:10.1016/j.cmet.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  20. Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, Liu J, Smith-McCune K, Lu KH, Fishman D, Gray JW, Mills GB (2004) The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 10(11):1251–1256. doi:10.1038/nm1125

    Article  CAS  PubMed  Google Scholar 

  21. Cheng KW, Lu Y, Mills GB (2005) Assay of Rab25 function in ovarian and breast cancers. Methods Enzymol 403:202–215. doi:10.1016/S0076-6879(05)03017-X

    Article  CAS  PubMed  Google Scholar 

  22. Hennessy BT, Lu Y, Gonzalez-Angulo AM, Carey MS, Myhre S, Ju Z, Davies MA, Liu W, Coombes K, Meric-Bernstam F, Bedrosian I, McGahren M, Agarwal R, Zhang F, Overgaard J, Alsner J, Neve RM, Kuo WL, Gray JW, Borresen-Dale AL, Mills GB (2010) A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin Proteomics 6(4):129–151. doi:10.1007/s12014-010-9055-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Carey MS, Agarwal R, Gilks B, Swenerton K, Kalloger S, Santos J, Ju Z, Lu Y, Zhang F, Coombes KR, Miller D, Huntsman D, Mills GB, Hennessy BT (2010) Functional proteomic analysis of advanced serous ovarian cancer using reverse phase protein array: TGF-beta pathway signaling indicates response to primary chemotherapy. Clin Cancer Res 16(10):2852–2860. doi:10.1158/1078-0432.CCR-09-2502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Susan G. Komen Postdoctoral Fellowship KG 101340 (SM), the CCSG RPPA Core grant NCI # CA16672 (GBM), the Ovarian Spore (NCI) 5 P50 CA083639 (GBM), and Breast PPG (NIH), 5P01 CA099031 (M.C. Hung, GBM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreya Mitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mitra, S., Molina, J., Mills, G.B., Dennison, J.B. (2015). Characterization of the Role Rab25 in Energy Metabolism and Cancer Using Extracellular Flux Analysis and Material Balance. In: Li, G. (eds) Rab GTPases. Methods in Molecular Biology, vol 1298. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2569-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2569-8_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2568-1

  • Online ISBN: 978-1-4939-2569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics