Measuring the Elasticity of Ribonucleotide(s)-Containing DNA Molecules Using AFM

  • Kyung Duk Koh
  • Hsiang-Chih Chiu
  • Elisa Riedo
  • Francesca Storici
Part of the Methods in Molecular Biology book series (MIMB, volume 1297)

Abstract

Ribonucleotides, ribonucleoside monophosphates (rNMPs), have been revealed as possibly the most noncanonical nucleotides in genomic DNA. rNMPs, either not removed from Okazaki fragments during DNA replication or incorporated and scattered throughout the genome, pose a perturbation to the structure and a threat to the stability of DNA. The instability of DNA is mainly due to the extra 2′-hydroxyl (OH) group of rNMPs which give rise to local structural effects, which may disturb various molecular interactions in cells. As a result of these structural perturbations by rNMPs, the elastic properties of DNA are also affected. Here, we show the approach to test whether the presence of rNMPs in DNA duplexes could alter the elasticity of DNA by implementing atomic force microscopy (AFM)-based single molecule force-measurements of short rNMP(s)-containing oligonucleotides (oligos).

Key words

Ribonucleoside monophosphates (rNMP) RNA elasticity Atomic force microscopy (AFM) Single molecule force spectroscopy Stretch modulus 

References

  1. 1.
    Camps M, Loeb LA (2005) Critical role of R-loops in processing replication blocks. Front Biosci 10:689–698CrossRefGoogle Scholar
  2. 2.
    Huertas P, Aguilera A (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12:711–721CrossRefGoogle Scholar
  3. 3.
    Forstemann K, Lingner J (2005) Telomerase limits the extent of base pairing between template RNA and telomeric DNA. EMBO Rep 6:361–366CrossRefGoogle Scholar
  4. 4.
    Kao HI, Bambara RA (2003) The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit Rev Biochem Mol Biol 38:433–452CrossRefGoogle Scholar
  5. 5.
    Storici F, Bebenek K, Kunkel TA, Gordenin DA, Resnick MA (2007) RNA-templated DNA repair. Nature 447:338–341CrossRefGoogle Scholar
  6. 6.
    Nick McElhinny SA, Watts BE, Kumar D, Watt DL, Lundstrom EB, Burgers PM, Johansson E, Chabes A, Kunkel TA (2010) Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc Natl Acad Sci U S A 107:4949–4954CrossRefGoogle Scholar
  7. 7.
    Sparks JL, Chon H, Cerritelli SM, Kunkel TA, Johansson E, Crouch RJ, Burgers PM (2012) RNase H2-Initiated ribonucleotide excision repair. Mol Cell 47:980–986CrossRefGoogle Scholar
  8. 8.
    Nick McElhinny SA, Kumar D, Clark AB, Watt DL, Watts BE, Lundstrom EB, Johansson E, Chabes A, Kunkel TA (2010) Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6:774–781CrossRefGoogle Scholar
  9. 9.
    Clausen AR, Zhang S, Burgers PM, Lee MY, Kunkel TA (2013) Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase delta. DNA Repair 12:121–127CrossRefGoogle Scholar
  10. 10.
    Cavanaugh NA, Beard WA, Wilson SH (2010) DNA polymerase beta ribonucleotide discrimination: insertion, misinsertion, extension, and coding. J Biol Chem 285:24457–24465CrossRefGoogle Scholar
  11. 11.
    Gosavi RA, Moon AF, Kunkel TA, Pedersen LC, Bebenek K (2012) The catalytic cycle for ribonucleotide incorporation by human DNA Pol lambda. Nucleic Acids Res 40:7518–7527CrossRefGoogle Scholar
  12. 12.
    Reijns MA, Rabe B, Rigby RE, Mill P, Astell KR, Lettice LA, Boyle S, Leitch A, Keighren M, Kilanowski F, Devenney PS, Sexton D, Grimes G, Holt IJ, Hill RE, Taylor MS, Lawson KA, Dorin JR, Jackson AP (2012) Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149:1008–1022CrossRefGoogle Scholar
  13. 13.
    Rowen L, Kornberg A (1978) A ribo-deoxyribonucleotide primer synthesized by primase. J Biol Chem 253:770–774Google Scholar
  14. 14.
    Zhu H, Shuman S (2008) Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3′-OH monoribonucleotide. J Biol Chem 283:8331–8339CrossRefGoogle Scholar
  15. 15.
    Randerath K, Reddy R, Danna TF, Watson WP, Crane AE, Randerath E (1992) Formation of ribonucleotides in DNA modified by oxidative damage in vitro and in vivo. Characterization by 32P-postlabeling. Mutat Res 275:355–366CrossRefGoogle Scholar
  16. 16.
    Koh KD, Balachander S, Hesselberth JR, Storici F (2015) Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat Methods. 12:251–257Google Scholar
  17. 17.
    Mellema JR, Haasnoot CA, van der Marel GA, Wille G, van Boeckel CA, van Boom JH, Altona C (1983) Proton NMR studies on the covalently linked RNA-DNA hybrid r(GCG)d(TATACGC). Assignment of proton resonances by application of the nuclear Overhauser effect. Nucleic Acids Res 11:5717–5738CrossRefGoogle Scholar
  18. 18.
    Egli M, Usman N, Zhang SG, Rich A (1992) Crystal structure of an Okazaki fragment at 2-A resolution. Proc Natl Acad Sci U S A 89:534–538CrossRefGoogle Scholar
  19. 19.
    Haasnoot CA, Westerink HP, van der Marel GA, van Boom JH (1983) Conformational analysis of a hybrid DNA-RNA double helical oligonucleotide in aqueous solution: d(CG)r(CG)d(CG) studied by 1D- and 2D-1H NMR spectroscopy. J Biomol Struct Dyn 1:131–149CrossRefGoogle Scholar
  20. 20.
    Chou SH, Flynn P, Wang A, Reid B (1991) High-resolution NMR studies of chimeric DNA-RNA-DNA duplexes, heteronomous base pairing, and continuous base stacking at junctions. Biochemistry 30:5248–5257CrossRefGoogle Scholar
  21. 21.
    Jaishree TN, van der Marel GA, van Boom JH, Wang AH (1993) Structural influence of RNA incorporation in DNA: quantitative nuclear magnetic resonance refinement of d(CG)r(CG)d(CG) and d(CG)r(C)d(TAGCG). Biochemistry 32:4903–4911CrossRefGoogle Scholar
  22. 22.
    Egli M, Usman N, Rich A (1993) Conformational influence of the ribose 2′-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes. Biochemistry 32:3221–3237CrossRefGoogle Scholar
  23. 23.
    Ban C, Ramakrishnan B, Sundaralingam M (1994) A single 2′-hydroxyl group converts B-DNA to A-DNA. Crystal structure of the DNA-RNA chimeric decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G-C base-paired quadruplet. J Mol Biol 236:275–285CrossRefGoogle Scholar
  24. 24.
    DeRose EF, Perera L, Murray MS, Kunkel TA, London RE (2012) Solution structure of the Dickerson DNA dodecamer containing a single ribonucleotide. Biochemistry 51:2407–2416CrossRefGoogle Scholar
  25. 25.
    Chiu HC, Koh KD, Evich M, Lesiak AL, Germann MW, Bongiorno A, Riedo E, Storici F (2014) RNA intrusions change DNA elastic properties and structure. Nanoscale 6(17):10009–10017CrossRefGoogle Scholar
  26. 26.
    Duderstadt KE, Chuang K, Berger JM (2011) DNA stretching by bacterial initiators promotes replication origin opening. Nature 478:209–213CrossRefGoogle Scholar
  27. 27.
    Bloom KS (2008) Beyond the code: the mechanical properties of DNA as they relate to mitosis. Chromosoma 117:103–110CrossRefGoogle Scholar
  28. 28.
    Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10:279–285CrossRefGoogle Scholar
  29. 29.
    Nishinaka T, Ito Y, Yokoyama S, Shibata T (1997) An extended DNA structure through deoxyribose-base stacking induced by RecA protein. Proc Natl Acad Sci U S A 94:6623–6628CrossRefGoogle Scholar
  30. 30.
    Mazurek A, Johnson CN, Germann MW, Fishel R (2009) Sequence context effect for hMSH2-hMSH6 mismatch-dependent activation. Proc Natl Acad Sci U S A 106:4177–4182CrossRefGoogle Scholar
  31. 31.
    Gross P, Laurens N, Oddershede LB, Bockelmann U, Peterman EJG, Wuite GJL (2011) Quantifying how DNA stretches, melts and changes twist under tension. Nat Phys 7:731–736CrossRefGoogle Scholar
  32. 32.
    Weber G, Essex JW, Neylon C (2009) Probing the microscopic flexibility of DNA from melting temperatures. Nat Phys 5:769–773CrossRefGoogle Scholar
  33. 33.
    Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440: 297–302CrossRefGoogle Scholar
  34. 34.
    Schiffels D, Liedl T, Fygenson DK (2013) Nanoscale structure and microscale stiffness of DNA nanotubes. ACS Nano 7:6700–6710CrossRefGoogle Scholar
  35. 35.
    Maune HT, Han SP, Barish RD, Bockrath M, Iii WA, Rothemund PW, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66CrossRefGoogle Scholar
  36. 36.
    Chang M, Yang CS, Huang DM (2011) Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 5:6156–6163CrossRefGoogle Scholar
  37. 37.
    Rief M, Clausen-Schaumann H, Gaub HE (1999) Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol 6:346–349CrossRefGoogle Scholar
  38. 38.
    Morii T, Mizuno R, Haruta H, Okada T (2004) An AFM study of the elasticity of DNA molecules. Thin Solid Films 464:456–458CrossRefGoogle Scholar
  39. 39.
    Smith S, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–1126CrossRefGoogle Scholar
  40. 40.
    Chiou CH, Huang YY, Chiang MH, Lee HH, Lee GB (2006) New magnetic tweezers for investigation of the mechanical properties of single DNA molecules. Nanotechnology 17:1217CrossRefGoogle Scholar
  41. 41.
    Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799CrossRefGoogle Scholar
  42. 42.
    Baumann CG, Smith SB, Bloomfield VA, Bustamante C (1997) Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci U S A 94:6185–6190CrossRefGoogle Scholar
  43. 43.
    Herrero-Galan E, Fuentes-Perez ME, Carrasco C, Valpuesta JM, Carrascosa JL, Moreno-Herrero F, Arias-Gonzalez JR (2013) Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J Am Chem Soc 135:122–131CrossRefGoogle Scholar
  44. 44.
    Chiu H-C, Kim S, Klinke C, Riedo E (2012) Morphology dependence of radial elasticity in multiwalled boron nitride nanotubes. Appl Phys Lett 101:103109CrossRefGoogle Scholar
  45. 45.
    Chiu H-C, Ritz B, Kim S, Tosatti E, Klinke C, Riedo E (2012) Nanotubes: sliding on a nanotube: interplay of friction, deformations and structure. Adv Mater 24:2797CrossRefGoogle Scholar
  46. 46.
    Li T-D, Riedo E (2008) Nonlinear viscoelastic dynamics of nanoconfined wetting liquids. Phys Rev Lett 100:106102CrossRefGoogle Scholar
  47. 47.
    Lucas M, Zhang X, Palaci I, Klinke C, Tosatti E, Riedo E (2009) Hindered rolling and friction anisotropy in supported carbon nanotubes. Nat Mater 8:876–881CrossRefGoogle Scholar
  48. 48.
    Palaci I, Fedrigo S, Brune H, Klinke C, Chen M, Riedo E (2005) Radial elasticity of multiwalled carbon nanotubes. Phys Rev Lett 94:175502CrossRefGoogle Scholar
  49. 49.
    Noy A, Vezenov DV, Kayyem JF, Meade TJ, Lieber CM (1997) Stretching and breaking duplex DNA by chemical force microscopy. Chem Biol 4:519–527CrossRefGoogle Scholar
  50. 50.
    Wiggins PA, van der Heijden T, Moreno-Herrero F, Spakowitz A, Phillips R, Widom J, Dekker C, Nelson PC (2006) High flexibility of DNA on short length scales probed by atomic force microscopy. Nat Nanotechnol 1:137–141CrossRefGoogle Scholar
  51. 51.
    Morfill J, Kuhner F, Blank K, Lugmaier RA, Sedlmair J, Gaub HE (2007) B-S transition in short oligonucleotides. Biophys J 93:2400–2409CrossRefGoogle Scholar
  52. 52.
    Nguyen T-H et al (2010) An improved measurement of dsDNA elasticity using AFM. Nanotechnology 21:75101CrossRefGoogle Scholar
  53. 53.
    Strunz T, Oroszlan K, Schafer R, Guntherodt HJ (1999) Dynamic force spectroscopy of single DNA molecules. Proc Natl Acad Sci U S A 96:11277–11282CrossRefGoogle Scholar
  54. 54.
    Mathew-Fenn RS, Das R, Harbury PA (2008) Remeasuring the double helix. Science 322:446–449CrossRefGoogle Scholar
  55. 55.
    Yuan C, Chen H, Lou XW, Archer LA (2008) DNA bending stiffness on small length scales. Phys Rev Lett 100:18102CrossRefGoogle Scholar
  56. 56.
    Oc L, Jeon J-H, Sung W (2010) How double-stranded DNA breathing enhances its flexibility and instability on short length scales. Phys Rev E Stat Nonlin Soft Matter Phys 81:21906CrossRefGoogle Scholar
  57. 57.
    Gibson CT, Watson GS, Myhra S (1996) Determination of the spring constants of probes for force microscopy/spectroscopy. Nanotechnology 7:259CrossRefGoogle Scholar
  58. 58.
    Sader JE, Larson I, Mulvaney P, White LR (1995) Method for the calibration of atomic force microscope cantilevers. Rev Sci Instrum 66:3789CrossRefGoogle Scholar
  59. 59.
    Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep 59:1–152CrossRefGoogle Scholar
  60. 60.
    Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967CrossRefGoogle Scholar
  61. 61.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic‐force microscope tips. Rev Sci Instrum 64:1868CrossRefGoogle Scholar
  62. 62.
    Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:43705CrossRefGoogle Scholar
  63. 63.
    Cumpson PJ, Clifford CA, Hedley J (2004) Quantitative analytical atomic force microscopy: a cantilever reference device for easy and accurate AFM spring-constant calibration. Meas Sci Technol 15:1337CrossRefGoogle Scholar
  64. 64.
    Wong J, Chilkoti A, Moy VT (1999) Direct force measurements of the streptavidin-biotin interaction. Biomol Eng 16:45–55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kyung Duk Koh
    • 1
  • Hsiang-Chih Chiu
    • 2
    • 3
  • Elisa Riedo
    • 2
  • Francesca Storici
    • 1
  1. 1.School of BiologyGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations