Skip to main content

Aptamer-Mediated Nanoparticle Interactions: From Oligonucleotide–Protein Complexes to SELEX Screens

  • Protocol
RNA Nanotechnology and Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1297))

  • 2400 Accesses

Abstract

Aptamers are oligonucleotides displaying specific binding properties for a predetermined target. They can be easily immobilized on various surfaces such as nanoparticles. Functionalized particles can then be used to various aims. We took advantage of the AlphaScreen® technology for monitoring aptamer-mediated interactions. A particle bearing an aptamer contains a photosensitizer whereas another type of particle contains a chemiluminescer. Irradiation causes the formation of singlet oxygen species in the photosensitizer-containing bead that in turn activates the chemiluminescer. Luminescence emission can be observed if the two types of beads are in close proximity (<200 nm). This is achieved when the cognate ligand of the aptamer is grafted onto the chemiluminescer-containing bead. Using this technology we have screened oligonucleotide libraries and monitored aptamer–protein interactions. This constitutes the basis for aptamer-based analytical assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  2. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  3. Jayasena SD (1999) Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  Google Scholar 

  4. Dausse E, Da Rocha Gomes S, Toulmé JJ (2009) Aptamers: a new class of oligonucleotides in the drug discovery pipeline? Curr Opin Pharmacol 9:602–607

    Article  CAS  Google Scholar 

  5. Tombelli S, Mascini M (2009) Aptamers as molecular tools for bioanalytical methods. Curr Opin Mol Ther 11:179–188

    CAS  Google Scholar 

  6. Cibiel A, Pestourie C, Ducongé F (2012) In vivo uses of aptamers selected against cell surface biomarkers for therapy and molecular imaging. Biochimie 94:1595–1606

    Article  CAS  Google Scholar 

  7. Kang KN, Lee YS (2013) RNA aptamers: a review of recent trends and applications. Adv Biochem Eng Biotechnol 131:153–169

    CAS  Google Scholar 

  8. Radom F, Jurek PM, Mazurek MP, Otlewski J, Jelen F (2013) Aptamers: molecules of great potential. Biotechnol Adv 31:1260–1274

    Article  CAS  Google Scholar 

  9. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T et al (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5:e15004

    Article  CAS  Google Scholar 

  10. Jenison R, Gill S, Polisky B (1995) Oligonucleotide ligands that discriminate between theophylline and caffeine. In: Innis MA, Gelfand DH, Sninsky JJ (eds) PCR Strategies. Academic Press, San Diego, CA, pp 289–299

    Chapter  Google Scholar 

  11. Chen H, Mcbroom DG, Zhu YQ, Gold L, North TW (1996) Inhibitory RNA ligand to reverse transcriptase from feline immunodeficiency virus. Biochemistry 35:6923–6930

    Article  CAS  Google Scholar 

  12. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825

    Article  CAS  Google Scholar 

  13. Hicke BJ, Marion C, Chang YF, Gould T, Lynott CK, Parma D, Schmidt PG, Warren S (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 276:48644–48654

    Article  CAS  Google Scholar 

  14. Da Rocha Gomes S, Miguel J, Azema L, Eimer S, Ries C, Dausse E, Loiseau H, Allard M, Toulmé JJ (2012) (99 m)Tc-MAG3-Aptamer for imaging human tumors associated with high level of Matrix Metalloprotease-9. Bioconjug Chem 23(11):2192–2200

    Article  Google Scholar 

  15. Cho EJ, Lee JW, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem (Palo Alto, Calif) 2:241–264

    Article  CAS  Google Scholar 

  16. Mascini M, Palchetti I, Tombelli S (2012) Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed Engl 51:1316–1332

    Article  CAS  Google Scholar 

  17. Lee JH (2013) Conjugation approaches for construction of aptamer-modified nanoparticles for application in imaging. Curr Top Med Chem 13:504–512

    Article  CAS  Google Scholar 

  18. Wang AZ, Farokhzad OC (2014) Current progress of aptamer-based molecular imaging. J Nucl Med 55:353–356

    Article  CAS  Google Scholar 

  19. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed Engl 48:2672–2689

    Article  CAS  Google Scholar 

  20. Hollenstein M (2012) Nucleoside triphosphates–building blocks for the modification of nucleic acids. Molecules 17:13569–13591

    Article  CAS  Google Scholar 

  21. Boiziau C, Dausse E, Yurchenko L, Toulmé JJ (1999) DNA aptamers selected against the HIV-1 trans-activation-responsive RNA element form RNA-DNA kissing complexes. J Biol Chem 274:12730–12737

    Article  CAS  Google Scholar 

  22. Kikuchi K, Umehara T, Fukuda K, Hwang J, Kuno A, Hasegawa T, Nishikawa S (2003) Structure-inhibition analysis of RNA aptamers that bind to HCV IRES. Nucleic Acids Res Suppl 291–292

    Google Scholar 

  23. Xiao F, Zhang H, Guo P (2008) Novel mechanism of hexamer ring assembly in protein/RNA interactions revealed by single molecule imaging. Nucleic Acids Res 36:6620–6632

    Article  CAS  Google Scholar 

  24. Afonin KA, Bindewald E, Yaghoubian AJ, Voss N, Jacovetty E, Shapiro BA, Jaeger L (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682

    Article  CAS  Google Scholar 

  25. Dausse E, Taouji S, Evadé L, Di Primo C, Chevet E, Toulmé JJ (2011) HAPIscreen, a method for high-throughput aptamer identification. J Nanobiotechnology 9:25

    Article  CAS  Google Scholar 

  26. Fukushima N, Weiner JA, Kaushal D, Contos JJ, Rehen SK, Kingsbury MA, Kim KY, Chun J (2002) Lysophosphatidic acid influences the morphology and motility of young, postmitotic cortical neurons. Mol Cell Neurosci 20:271–282

    Article  CAS  Google Scholar 

  27. Lee CW, Rivera R, Dubin AE, Chun J (2007) LPA(4)/GPR23 is a lysophosphatidic acid (LPA) receptor utilizing G(s)-, G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated Rho activation. J Biol Chem 282:4310–4317

    Article  CAS  Google Scholar 

  28. Platonova N, Miquel G, Regenfuss B, Taouji S, Cursiefen C, Chevet E, Bikfalvi A (2013) Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1. Blood 121:1229–1237

    Article  CAS  Google Scholar 

  29. D’Agostino VG, Adami V, Provenzani A (2013) A novel high throughput biochemical assay to evaluate the HuR protein-RNA complex formation. PLoS One 8:e72426

    Article  Google Scholar 

  30. Gabriel D, Vernier M, Pfeifer MJ, Dasen B, Tenaillon L, Bouhelal R (2003) High throughput screening technologies for direct cyclic AMP measurement. Assay Drug Dev Technol 1:291–303

    Article  CAS  Google Scholar 

  31. Gray A, Olsson H, Batty IH, Priganica L, Peter Downes C (2003) Nonradioactive methods for the assay of phosphoinositide 3-kinases and phosphoinositide phosphatases and selective detection of signaling lipids in cell and tissue extracts. Anal Biochem 313:234–245

    Article  CAS  Google Scholar 

  32. Cavallini A, Brewerton S, Bell A, Sargent S, Glover S, Hardy C, Moore R, Calley J, Ramachandran D, Poidinger M et al (2013) An unbiased approach to identifying tau kinases that phosphorylate tau at sites associated with Alzheimer disease. J Biol Chem 288:23331–23347

    Article  CAS  Google Scholar 

  33. Binder C, Lafayette A, Archibeque I, Sun Y, Plewa C, Sinclair A, Emkey R (2008) Optimization and utilization of the SureFire phospho-STAT5 assay for a cell-based screening campaign. Assay Drug Dev Technol 6:27–37

    Article  CAS  Google Scholar 

  34. Dausse E, Cazenave C, Rayner B, Toulmé JJ (2005) In vitro selection procedures for identifying DNA and RNA aptamers targeted to nucleic acids and proteins. Methods Mol Biol 288:391–410

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Pr D. Desmecht and Dr F. Cornet (University of Liège, Belgium) for help in identification of C1 and C6 aptamers and to T. Crosson for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Toulmé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Evadé, L., Dausse, E., Taouji, S., Daguerre, E., Chevet, E., Toulmé, JJ. (2015). Aptamer-Mediated Nanoparticle Interactions: From Oligonucleotide–Protein Complexes to SELEX Screens. In: Guo, P., Haque, F. (eds) RNA Nanotechnology and Therapeutics. Methods in Molecular Biology, vol 1297. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2562-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2562-9_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2561-2

  • Online ISBN: 978-1-4939-2562-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics