Advertisement

Dynamic Range Compression with ProteoMiner™: Principles and Examples

Part of the Methods in Molecular Biology book series (MIMB, volume 1295)

Abstract

One of the main challenges in proteomics investigation, protein biomarker research, and protein purity and contamination analysis is how to efficiently enrich and detect low-abundance proteins in biological samples. One approach that makes the detection of rare species possible is the treatment of biological samples with solid-phase combinatorial peptide ligand libraries, ProteoMiner. This method utilizes hexapeptide bead library with huge diversity to bind and enrich low-abundance proteins but remove most of the high-abundance proteins, therefore compresses the protein abundance range in the samples. This work describes optimized protocols and highlights on the successful application of ProteoMiner to protein identification and analysis.

Key words

Low-abundance proteins Proteomics ProteoMiner Dynamic range compression Plasma Serum Saliva Host cell proteins 

References

  1. 1.
    Anderson N, Anderson N (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 11:845–867CrossRefGoogle Scholar
  2. 2.
    Anderson N, Polanski M, Pieper R et al (2004) The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3:311–326CrossRefPubMedGoogle Scholar
  3. 3.
    Thulasiraman V, Lin S, Gheorghiu L et al (2005) Reduction of the concentration difference of proteins in biological liquids using a library of combinatorial ligands. Electrophoresis 26:3561–3571CrossRefPubMedGoogle Scholar
  4. 4.
    Guerrier L, Thulasiraman V, Castagna A et al (2006) Reducing protein concentration range of biological samples using solid-phase ligand libraries. J Chromatogr B 833:33–40CrossRefGoogle Scholar
  5. 5.
    Boschetti E, Righetti P (2008) Hexapeptide combinatorial ligand libraries: the march for the detection of the low-abundance proteome continues. Biotechniques 44:663–665CrossRefPubMedGoogle Scholar
  6. 6.
    Boschetti E, Righetti P (2013) Low abundance protein discovery: state of the art and protocols. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Castagna A, Cecconi D, Sennels L et al (2005) Exploring the hidden human urinary proteome via ligand library beads. J Proteome Res 4:1917–1930CrossRefPubMedGoogle Scholar
  8. 8.
    Guerrier L, Claverol S, Finzi L et al (2007) Contribution of solid-phase hexapeptide ligand libraries to the repertoire of human bile proteins. J Chromatogr A 1176:192–205CrossRefPubMedGoogle Scholar
  9. 9.
    Guerrier L, Claverol S, Fortis F et al (2007) Exploring the platelet proteome via combinatorial, hexapeptide ligand libraries. J Proteome Res 6:4290–4303CrossRefPubMedGoogle Scholar
  10. 10.
    Simó C, Bachi A, Cattaneo A et al (2008) Performance of combinatorial peptide libraries in capturing the low-abundance proteome of red blood cells. 1. Behavior of mono- to hexapeptides. Anal Chem 80:3547–3556CrossRefPubMedGoogle Scholar
  11. 11.
    Bachi A, Simó C, Restuccia U et al (2008) Performance of combinatorial peptide libraries in capturing the low-abundance proteome of red blood cells. 2. Behavior of resins containing individual amino acids. Anal Chem 80:3557–3565CrossRefPubMedGoogle Scholar
  12. 12.
    D'Ambrosio C, Arena S, Scaloni A et al (2008) Exploring the chicken egg white proteome with combinatorial peptide ligand libraries. J Proteome Res 7:3461–3474CrossRefPubMedGoogle Scholar
  13. 13.
    Farinazzo A, Restuccia U, Bachi A et al (2009) Chicken egg yolk cytoplasmic proteome, mined via combinatorial peptide ligand libraries. J Chromatogr A 1216:1241–1252CrossRefPubMedGoogle Scholar
  14. 14.
    Shores K, Udugamasooriva D, Kodadek T et al (2008) Use of peptide analogue diversity library beads for increased depth of proteomic analysis: application to cerebrospinal fluid. J Proteome Res 7:1922–1931CrossRefPubMedGoogle Scholar
  15. 15.
    Bandhakavi S, Stone M, Onsongo G et al (2009) A dynamic range compression and three-dimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva. J Proteome Res 8:5590–5600CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Bandhakavi S, Van Riper S, Tawfik P et al (2010) Hexapeptide libraries for enhanced protein PTM identification and relative abundance profiling in whole human saliva. J Proteome Res 10:1052–1061CrossRefGoogle Scholar
  17. 17.
    Calvete J, Fasoli E, Sanz L et al (2009) Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. J Proteome Res 8:3055–3067CrossRefPubMedGoogle Scholar
  18. 18.
    D'Amato A, Bachi A, Fasoli E et al (2009) In-depth exploration of cow’s whey proteome via combinatorial peptide ligand libraries. J Proteome Res 8:3925–3936CrossRefPubMedGoogle Scholar
  19. 19.
    Liao Y, Alvarado R, Phinney B et al (2011) Proteomic characterization of human milk whey proteins during a twelve-month lactation period. J Proteome Res 10:1746–1754CrossRefPubMedGoogle Scholar
  20. 20.
    Fasoli E, D'Amato A, Righetti P et al (2012) Exploration of the sea urchin coelomic fluid via combinatorial peptide ligand libraries. Biol Bull 222:93–104PubMedGoogle Scholar
  21. 21.
    Fasoli E, D’Amato A, Kravchuk A et al (2011) Popeye strikes again: the deep proteome of spinach leaves. J Proteomics 74:127–136CrossRefPubMedGoogle Scholar
  22. 22.
    Esteve C, D'Amato A, Marina M et al (2012) Identification of olive (Olea europaea) seed and pulp proteins by nLC-MS/MS via combinatorial peptide ligand libraries. J Proteomics 75:2396–2403CrossRefPubMedGoogle Scholar
  23. 23.
    Fasoli E, Righetti P (2013) The peel and pulp of mango fruit: a proteomic samba. Biochim Biophys Acta 1834:2539–2545CrossRefPubMedGoogle Scholar
  24. 24.
    Fröhlich A, Gaupels F, Sarioglu H et al (2012) Looking deep inside: detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. Plant Physiol 159:902–914CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Gaupels F, Sarioglu H, Beckmann M et al (2012) Deciphering systemic wound responses of the pumpkin extrafascicular phloem by metabolomics and stable isotope-coded protein labeling. Plant Physiol 160:2285–2299CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    D’Amato A, Bachi A, Fasoli E et al (2010) In-depth exploration of Hevea brasiliensis latex proteome and “hidden allergens” via combinatorial peptide ligand libraries. J Proteomics 73:1368–1380CrossRefPubMedGoogle Scholar
  27. 27.
    Cereda A, Kravchuk A, D’Amato A et al (2010) Proteomics of wine additives: mining for the invisible via combinatorial peptide ligand libraries. J Proteomics 73:1732–1739CrossRefPubMedGoogle Scholar
  28. 28.
    Cereda A, Kravchuk A, D’Amato A et al (2010) Noah’s nectar: the proteome content of a glass of red wine. J Proteomics 73:2370–2377CrossRefGoogle Scholar
  29. 29.
    Fortis F, Guerrier L, Righetti P et al (2006) A new approach for the removal of protein impurities from purified biologicals using combinatorial solid-phase ligand libraries. Electrophoresis 27:3018–3027CrossRefPubMedGoogle Scholar
  30. 30.
    Fortis F, Guerrier L, Areces L et al (2006) A new approach for the detection and identification of protein impurities using combinatorial solid phase ligand libraries. J Proteome Res 5:2577–2585CrossRefPubMedGoogle Scholar
  31. 31.
    Li L, Sun C, Freeby S et al (2009) Protein sample treatment with peptide ligand library: coverage and consistency. J Proteomics Bioinform 2:485–494CrossRefGoogle Scholar
  32. 32.
    Dwivedi R, Krokhin O, Cortens J et al (2009) Assessment of the reproducibility of random hexapeptide peptide library-based protein normalization. J Proteome Res 9:1144–1149CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Protein Technologies R&D, Life Science GroupBio-Rad LaboratoriesHerculesUSA

Personalised recommendations