Skip to main content

Neutral Phosphate-Affinity SDS-PAGE System for Profiling of Protein Phosphorylation

  • Protocol
Proteomic Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1295))

Abstract

In this chapter, we describe a standard protocol for phosphate-affinity SDS-PAGE that uses a dizinc(II) complex of the phosphate-binding molecule Phos-tag in conjunction with a neutral-pH gel system (Zn2+–Phos-tag SDS-PAGE) to detect shifts in the mobilities of phosphoproteins. A previous protocol for affinity electrophoresis that uses polyacrylamide-bound Mn2+-Phos-tag and Laemmli’s buffer system under conditions of alkaline pH has limitations in separating certain phosphoproteins. The current protocol provides major improvements in separation and detection of various phosphorylated protein species. We here introduce two neutral-pH gel systems buffered with Bis–Tris–HCl and Tris–AcOH, respectively, for Zn2+–Phos-tag SDS-PAGE, and we also discuss their characteristics on the basis of comparative studies on phosphorylation profiling of proteins with a wide range of molecular masses. Each analytical procedure, from the beginning of gel preparation to the end of electrophoresis, requires 2.5–5 h with either buffer system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (2000) Signaling: 2000 and beyond. Cell 100:113–127

    Article  CAS  PubMed  Google Scholar 

  2. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  CAS  PubMed  Google Scholar 

  3. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541

    Article  CAS  PubMed  Google Scholar 

  4. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  5. Kerk D, Templeton G, Moorhead GB (2008) Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants. Plant Physiol 146:351–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Brognard J, Hunter T (2011) Protein kinase signaling networks in cancer. Curr Opin Genet Dev 21:4–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int 58:458–471

    Article  CAS  PubMed  Google Scholar 

  8. Kosako H, Nagano K (2011) Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics 8:81–94

    Article  CAS  PubMed  Google Scholar 

  9. Schmelzle K, White FM (2006) Phosphoproteomic approaches to elucidate cellular signaling networks. Curr Opin Biotechnol 17:406–414

    Article  CAS  PubMed  Google Scholar 

  10. Stasyk T, Dubrovska A, Lomnytska M et al (2005) Phosphoproteome profiling of transforming growth factor (TGF)-β signaling: abrogation of TGFβ1-dependent phosphorylation of transcription factor-II-I (TFII-I) enhances cooperation of TFII-I and Smad3 in transcription. Mol Biol Cell 16:4765–4780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Agrawal GK, Thelen JJ (2006) Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics 5:2044–2059

    Article  CAS  PubMed  Google Scholar 

  12. Kinoshita E, Takahashi M, Takeda H et al (2004) Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans 1189–1193

    Google Scholar 

  13. Kinoshita-Kikuta E, Kinoshita E, Yamada A et al (2006) Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH. Proteomics 6:5088–5095

    Article  CAS  PubMed  Google Scholar 

  14. Kinoshita-Kikuta E, Kinoshita E, Koike T (2009) Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysates. Anal Biochem 389:83–85

    Article  CAS  PubMed  Google Scholar 

  15. Kinoshita E, Yamada A, Takeda H et al (2005) Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins. J Sep Sci 28:155–162

    Article  CAS  PubMed  Google Scholar 

  16. Kinoshita-Kikuta E, Yamada A, Inoue C et al (2010) A novel phosphate-affinity bead with immobilized Phos-tag for separation and enrichment of phosphopeptides and phosphoproteins. J Integr OMICS 1:157–169

    Google Scholar 

  17. Nabetani T, Kim YJ, Watanabe M et al (2009) Improved method of phosphopeptides enrichment using biphasic phosphate-binding tag/C18 tip for versatile analysis of phosphorylation dynamics. Proteomics 9:5525–5533

    Article  CAS  PubMed  Google Scholar 

  18. Kikuchi J, Iwafune Y, Akiyama T et al (2010) Co- and post-translational modifications of the 26S proteasome in yeast. Proteomics 10:2769–2779

    Article  CAS  PubMed  Google Scholar 

  19. Oyama M, Nagashima T, Suzuki T et al (2011) Integrated quantitative analysis of the phosphoproteome and transcriptome in tamoxifen-resistant breast cancer. J Biol Chem 286:818–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tsunehiro M, Meki Y, Matsuoka K et al (2013) A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules. J Chromatogr B Anal Technol Biomed Life Sci 925:86–94

    Article  CAS  Google Scholar 

  21. Inamori K, Kyo M, Nishiya Y et al (2005) Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule. Anal Chem 77:3979–3985

    Article  CAS  PubMed  Google Scholar 

  22. Inamori K, Kyo M, Matsukawa K et al (2008) Optimal surface chemistry for peptide immobilization in on-chip phosphorylation analysis. Anal Chem 80:643–650

    Article  CAS  PubMed  Google Scholar 

  23. Inamori K, Kyo M, Matsukawa K et al (2009) Establishment of screening system toward discovery of kinase inhibitors using label-free on-chip phosphorylation assays. Biosystems 97:179–185

    Article  CAS  PubMed  Google Scholar 

  24. Kinoshita E, Kinoshita-Kikuta E, Koike T (2013) Sandwich assay for phosphorylation of protein multiplexes by using antibodies and Phos-tag. Anal Biochem 438:104–106

    Article  CAS  PubMed  Google Scholar 

  25. Ikeda H, Kamimoto J, Yamamoto T et al (2013) A peptide microarray fabricated on a non-fouling phosphatidylcholine-polymer-coated surface for a high-fidelity analysis of a cellular kinome. Curr Med Chem 20:4419–4425

    Article  CAS  PubMed  Google Scholar 

  26. Kinoshita E, Kinoshita-Kikuta E, Sugiyama Y et al (2012) Highly sensitive detection of protein phosphorylation by using improved Phos-tag Biotin. Proteomics 12:932–937

    Article  CAS  PubMed  Google Scholar 

  27. Kinoshita E, Kinoshita-Kikuta E, Koike T (2013) Phos-tag-based microarray techniques advance phosphoproteomics. J Proteomics Bioinform S6:008

    Google Scholar 

  28. Nakanishi T, Ando E, Furuta M et al (2007) Identification on membrane and characterization of phosphoproteins using an alkoxide-bridged dinuclear metal complex as a phosphate binding tag molecule. J Biomol Tech 18:278–286

    PubMed Central  PubMed  Google Scholar 

  29. Kinoshita E, Kinoshita-Kikuta E, Takiyama K et al (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757

    Article  CAS  PubMed  Google Scholar 

  30. Kinoshita-Kikuta E, Aoki Y, Kinoshita E et al (2007) Label-free kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. Mol Cell Proteomics 6:356–366

    Article  CAS  PubMed  Google Scholar 

  31. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  32. Kinoshita E, Kinoshita-Kikuta E, Matsubara M et al (2008) Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. Proteomics 8:2994–3003

    Article  CAS  PubMed  Google Scholar 

  33. Kinoshita E, Kinoshita-Kikuta E, Matsubara M et al (2009) Two-dimensional phosphate-affinity gel electrophoresis for the analysis of phosphoprotein isotypes. Electrophoresis 30:550–559

    Article  CAS  PubMed  Google Scholar 

  34. Kimura Y, Nagata K, Suzuki N et al (2010) Characterization of multiple alternative forms of heterogeneous nuclear ribonucleoprotein K by phosphate-affinity electrophoresis. Proteomics 10:3884–3895

    Article  CAS  PubMed  Google Scholar 

  35. Yamada S, Nakamura H, Kinoshita E et al (2007) Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis. Anal Biochem 360:160–162

    Article  CAS  PubMed  Google Scholar 

  36. Ishiai M, Kitao H, Smogorzewska A et al (2008) FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Biol 15:1138–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kinoshita E, Kinoshita-Kikuta E, Ujihara H et al (2009) Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agarose. Proteomics 9:4098–4101

    Article  CAS  PubMed  Google Scholar 

  38. Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4:1513–1521

    Article  CAS  PubMed  Google Scholar 

  39. Sugiyama M, Sugiyama Y, Hatano N et al (2010) The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 1δ/ε. Biochem J 427:489–497

    Article  CAS  PubMed  Google Scholar 

  40. Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Phosphate-affinity gel electrophoresis using a Phos-tag molecule for phosphoproteome study. Curr Proteomics 6:104–121

    Article  CAS  Google Scholar 

  41. Messer AE, Gallon CE, McKenna WJ et al (2009) The use of phosphate-affinity SDS-PAGE to measure the cardiac troponin I phosphorylation site distribution in human heart muscle. Proteomics Clin Appl 3:1371–1382

    CAS  PubMed  Google Scholar 

  42. Kinoshita E, Kinoshita-Kikuta E (2011) Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11:319–323

    Article  CAS  PubMed  Google Scholar 

  43. Aguilar HN, Tracey CN, Tsang SC et al (2011) Phos-tag-based analysis of myosin regulatory light chain phosphorylation in human uterine myocytes. PLoS One 6:e20903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Lee J, Kim JC, Lee SE et al (2012) Signal transducer and activator of transcription 3 (STAT3) protein suppresses adenoma-to-carcinoma transition in Apc min/+ mice via regulation of Snail-1 (SNAI) protein stability. J Biol Chem 287:18182–18189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kinoshita E, Kinoshita-Kikuta E, Koike T (2012) Phos-tag SDS-PAGE systems for phosphorylation profiling of proteins with a wide range of molecular masses under neutral pH conditions. Proteomics 12:192–202

    Article  CAS  PubMed  Google Scholar 

  46. Sepulveda P, Binner JGP (2001) Persulfate-amine initiation systems for gelcasting of ceramic foams. Chem Mater 13:4065–4070

    Article  CAS  Google Scholar 

  47. Kinoshita-Kikuta E, Kinoshita E, Koike T (2012) Separation and identification of four distinct serine-phosphorylation states of ovalbumin by Phos-tag affinity electrophoresis. Electrophoresis 33:849–855

    Article  CAS  PubMed  Google Scholar 

  48. Kinoshita E, Kinoshita-Kikuta E, Shiba A et al (2014) Profiling of protein thiophosphorylation by Phos-tag affinity electrophoresis: evaluation of adenosine 5′-O-(3-thiotriphosphate) as a phosphoryl donor in protein kinase reactions. Proteomics 14:668–679

    Article  CAS  PubMed  Google Scholar 

  49. Kozlov SV, Graham ME, Peng C et al (2006) Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25:3504–3514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kozlov SV, Graham ME, Jakob B et al (2011) Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem 286:9107–9119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Aoki K, Yamada M, Kunida K et al (2011) Processive phosphorylation of ERK MAP kinase in mammalian cells. Proc Natl Acad Sci U S A 108:12675–12680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Stephen MK (2000) Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol 12:186–192

    Article  Google Scholar 

  53. Kinoshita-Kikuta E, Kinoshita E, Koike T (2012) A laborsaving, timesaving, and more reliable strategy for separation of low-molecular-mass phosphoproteins in Phos-tag affinity electrophoresis. Int J Chem (Mumbai, India) 4(5):1–8

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by KAKENHI Grants (24590050, 25293005, 25560417, 25117718, and 26460036) and a research grant from the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Kinoshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kinoshita-Kikuta, E., Kinoshita, E., Koike, T. (2015). Neutral Phosphate-Affinity SDS-PAGE System for Profiling of Protein Phosphorylation. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 1295. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2550-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2550-6_24

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2549-0

  • Online ISBN: 978-1-4939-2550-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics