Skip to main content

Probing Small Non-Coding RNAs Structures

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1296))

Abstract

The diverse roles of RNAs depend on their ability to fold so as to form biologically functional structures. Thus, understanding the function of a given RNA molecule often requires experimental analysis of its secondary structure by in vitro RNA probing, which is more accurate than using prediction programs only. This chapter presents in vitro RNA probing protocols that we routinely use, from RNA transcript production and purification to RNA structure determination using enzymatic (RNases T1, T2, and V1) and chemical (DMS, CMCT, kethoxal, and Pb2+) probing performed on both unlabeled and end-labeled RNAs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Warf MB, Berglund JA (2010) Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 35(3):169–178. doi:10.1016/j.tibs.2009.10.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4(2). doi:10.1101/cshperspect.a003566

    Google Scholar 

  3. Weinberg Z, Perreault J, Meyer MM, Breaker RR (2009) Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 462(7273):656–659. doi:10.1038/nature08586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Prusa J, Missak J, Kittrell J, Evans JJ, Tapprich WE (2014) Major alteration in coxsackievirus B3 genomic RNA structure distinguishes a virulent strain from an avirulent strain. Nucleic Acids Res 42(15):10112–10121. doi:10.1093/nar/gku706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ray SS, Pal SK (2013) RNA secondary structure prediction using soft computing. IEEE/ACM Trans Comput Biol Bioinform 10(1):2–17. doi:10.1109/TCBB.2012.159

    Article  CAS  PubMed  Google Scholar 

  6. Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15(22):9109–9128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Weeks KM (2010) Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol 20(3):295–304. doi:10.1016/j.sbi.2010.04.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Das R, Laederach A, Pearlman SM, Herschlag D, Altman RB (2005) SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11(3):344–354. doi:10.1261/rna.7214405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Simmons K, Martin JS, Shcherbakova I, Laederach A (2009) Rapid quantification and analysis of kinetic *OH radical footprinting data using SAFA. Methods Enzymol 468:47–66. doi:10.1016/S0076-6879(09)68003-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mitra S, Shcherbakova IV, Altman RB, Brenowitz M, Laederach A (2008) High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res 36(11):e63. doi:10.1093/nar/gkn267

    Article  PubMed Central  PubMed  Google Scholar 

  11. Mortimer SA, Trapnell C, Aviran S, Pachter L, Lucks JB (2012) SHAPE-Seq: high-throughput RNA structure analysis. Curr Protoc Chem Biol 4(4):275–297. doi:10.1002/9780470559277.ch120019

    PubMed  Google Scholar 

  12. Loughrey D, Watters KE, Settle AH, Lucks JB (2014) SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res 42(21). doi:10.1093/nar/gku909

  13. Aviran S, Pachter L (2014) Rational experiment design for sequencing-based RNA structure mapping. RNA 20:1864–1877. doi:10.1261/rna.043844.113

    Article  CAS  PubMed  Google Scholar 

  14. Vasa SM, Guex N, Wilkinson KA, Weeks KM, Giddings MC (2008) ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA 14(10):1979–1990. doi:10.1261/rna.1166808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mereau A, Fournier R, Gregoire A, Mougin A, Fabrizio P, Luhrmann R, Branlant C (1997) An in vivo and in vitro structure-function analysis of the Saccharomyces cerevisiae U3A snoRNP: protein-RNA contacts and base-pair interaction with the pre-ribosomal RNA. J Mol Biol 273(3):552–571. doi:10.1006/jmbi.1997.1320

    Article  CAS  PubMed  Google Scholar 

  17. Talkish J, May G, Lin Y, Woolford JL Jr, McManus CJ (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20(5):713–720. doi:10.1261/rna.042218.113

    Article  CAS  PubMed  Google Scholar 

  18. Kielpinski LJ, Vinther J (2014) Massive parallel-sequencing-based hydroxyl radical probing of RNA accessibility. Nucleic Acids Res 42(8):e70. doi:10.1093/nar/gku167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Balzer M, Wagner R (1998) A chemical modification method for the structural analysis of RNA and RNA-protein complexes within living cells. Anal Biochem 256(2):240–242. doi:10.1006/abio.1997.2499

    Article  CAS  PubMed  Google Scholar 

  20. Silberklang M, Gillum AM, RajBhandary UL (1979) Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol 59:58–109

    Article  CAS  PubMed  Google Scholar 

  21. England TE, Uhlenbeck OC (1978) 3′-terminal labelling of RNA with T4 RNA ligase. Nature 275(5680):560–561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J.V.P. was supported by a graduate fellowship from the french Ministère Délégué à la Recherche et aux Technologies. This work was supported by grants from the Agence Nationale pour la Recherche contre le Sida (ANRS), the European Alternative Splicing Network of Excellence (EURASNET, FP6 life sciences, genomics and biotechnology for health) and the European Associated Laboratory (LEA) on pre-mRNA splicing created by CNRS, UL, UM1, UM2 and Max Planck Institut. V. Vautrot is acknowledged for providing materials for illustration of the enzymatic probing experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Behm-Ansmant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Philippe, JV., Ayadi, L., Branlant, C., Behm-Ansmant, I. (2015). Probing Small Non-Coding RNAs Structures. In: Rederstorff, M. (eds) Small Non-Coding RNAs. Methods in Molecular Biology, vol 1296. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2547-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2547-6_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2546-9

  • Online ISBN: 978-1-4939-2547-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics