Skip to main content

Targeting Stress Responses for Regenerative Medicine

  • Protocol
Stress Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1292))

Abstract

Some internal and external stimuli elicit stress responses on the cellular level and at the level of the organism. When the stimulus is brief and its intensity mild to moderate, it triggers adaptation changes that improve the cell’s or organism’s survival. This adaptation is achieved through a variety of cellular mechanisms such as induction of repair mechanisms, improved removal of damaged macromolecules, upregulation of endogenous antioxidant defenses, and prevention of apoptosis triggering by moderate stressors. The key intracellular signaling pathways involved in stress adaptation are the mTORC1 and SIRT1. Manipulating these stress adaptation signaling pathways with a variety of agents, improves the cellular adaptation to stress, prolongs cell survival, and improves the transplantation outcome in animal models and in clinical trials. The challenge for the future is to fine-tune the numerous experimental techniques to suit the needs of transplantation and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milisav I, Poljsak B, Suput D (2012) Adaptive response, evidence of cross-resistance and its potential clinical use. Int J Mol Sci 13:10771–10806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Milisav I (2011) Cellular stress responses. In: Wislet-Gendebien S (ed) Advances in regenerative medicine, InTech, Rijeka, Croatia. pp 215–232

    Google Scholar 

  3. Kültz D (2003) Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol 206:119–124

    Article  Google Scholar 

  4. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kourtis N, Tavernakis N (2011) Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J 30:2520–2531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nipic D, Pirc A, Banic B et al (2010) Preapoptotic cell stress response of primary hepatocytes. Hepatology 51:2140–2151

    Article  CAS  PubMed  Google Scholar 

  7. Banič B, Nipič D, Suput D et al (2011) DMSO modulates the pathway of apoptosis triggering. Cell Mol Biol Lett 16:328–341

    PubMed  Google Scholar 

  8. Portt L, Norman G, Clapp C et al (2011) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813:238–259

    Article  CAS  PubMed  Google Scholar 

  9. Fulda S, Gorman AM, Hori O et al (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol. doi:10.1155/2010/214074

    Google Scholar 

  10. Fulda S (2010) Evasion of apoptosis as a cellular stress response in cancer. Int J Cell Biol 2010:370835

    PubMed Central  PubMed  Google Scholar 

  11. Stancevic B, Kolesnick R (2010) Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584:1728–1740

    Article  CAS  PubMed  Google Scholar 

  12. Nikolova-Karakashian MN, Rozenova KA (2010) Ceramide in stress response. Adv Exp Med Biol 688:86–108

    Article  CAS  PubMed  Google Scholar 

  13. Naesens M (2011) Replicative senescence in kidney aging, renal disease, and renal transplantation. Discov Med 11:65–75

    PubMed  Google Scholar 

  14. Murry CE, Richard VJ, Reimer KA et al (1990) Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res 66:913–931

    Article  CAS  PubMed  Google Scholar 

  15. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  CAS  PubMed  Google Scholar 

  16. Gerczuk PZ, Kloner RA (2012) An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J Am Coll Cardiol 59:969–978

    Article  PubMed  Google Scholar 

  17. Ding ZM, Wu B, Zhang WQ et al (2012) Neuroprotective effects of ischemic preconditioning and postconditioning on global brain ischemia in rats through the same effect on inhibition of apoptosis. Int J Mol Sci 13:6089–6101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Wagner C, Tillack D, Simonis G et al (2010) Ischemic post-conditioning reduces infarct size of the in vivo rat heart: role of PI3-K, mTOR, GSK-3beta, and apoptosis. Mol Cell Biochem 339:135–147

    Article  CAS  PubMed  Google Scholar 

  19. Abete P, Rengo F (2008) Mild stress in the aging heart. Role of ischemic preconditioning. In: Le Bourg E, Rattan S (eds) Mild stress and healthy aging. Springer, Heidelberg, pp 139–155

    Chapter  Google Scholar 

  20. Radak Z, Chung HY, Koltai E et al (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7:34–42

    Article  CAS  PubMed  Google Scholar 

  21. Raeburn CD, Zimmerman MA, Banerjee A et al (2004) Surgical applications of organ preconditioning. Minerva Chir 59:209–218

    CAS  PubMed  Google Scholar 

  22. Pribenszky C, Vajta G (2011) Cells under pressure: how sublethal hydrostatic pressure stress treatment increases gametes’ and embryos’ performance. Reprod Fertil Dev 23:48–55

    Article  PubMed  Google Scholar 

  23. Powers SK, Ji LL, Leeuwenburgh C (1999) Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 31:987–997

    Article  CAS  PubMed  Google Scholar 

  24. Poljsak B, Milisav I (2012) The neglected significance of “antioxidative stress”. Oxid Med Cell Longev. doi:10.1155/2012/480895

    PubMed Central  PubMed  Google Scholar 

  25. Schafer ZT, Grassian AR, Song L et al (2009) Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461:109–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sun JZ, Tang XL, Park SW et al (1996) Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest 97:562–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sharma RK, Netland PA, Kedrov MA et al (2009) Preconditioning protects the retinal pigment epithelium cells from oxidative stress-induced cell death. Acta Ophthalmol 87:82–88

    Article  CAS  PubMed  Google Scholar 

  28. Torii T, Miyazawa M, Koyama I (2005) Effect of continuous application of shear stress on liver tissue: continuous application of appropriate shear stress has advantage in protection of liver tissue. Transplant Proc 37:4575–4578

    Article  CAS  PubMed  Google Scholar 

  29. Wagner M, Cadetg P, Ruf R et al (2003) Heme oxygenase-1 attenuates ischemia/reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int 63:1564–1573

    Article  CAS  PubMed  Google Scholar 

  30. Uchida Y, Tamaki T, Tanaka M et al (2003) Induction of specific stress response increases resistance of rat liver allografts to cold ischemia and reperfusion injury. Transpl Int 16:396–404

    Article  CAS  PubMed  Google Scholar 

  31. Yan F, Yao Y, Chen L et al (2012) Hypoxic preconditioning improves survival of cardiac progenitor cells: role of stromal cell derived factor-1α-CXCR4 axis. PLoS One 7:e37948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wisel S, Khan M, Kuppusamy ML et al (2009) Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther 329:543–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sheng Z, Yao Y, Li Y et al (2013) Bradykinin preconditioning improves therapeutic potential of human endothelial progenitor cells in infarcted myocardium. PLoS One 8:e81505

    Article  PubMed Central  PubMed  Google Scholar 

  34. Elmadbouh I, Haider HK, Ashraf M et al (2011) Preconditioning of human skeletal myoblast with stromal cell-derived factor-1α promotes cytoprotective effects against oxidative and anoxic stress. Int J Stem Cells 4:50–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Harrison EM, Sharpe E, Bellamy CO et al (2008) Heat shock protein 90-binding agents protect renal cells from oxidative stress and reduce kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 295:F397–F405

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Zhao T, Huang W et al (2009) Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells 27:3021–3031

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Milisav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Milisav, I., Ribarič, S., Šuput, D. (2015). Targeting Stress Responses for Regenerative Medicine. In: Oslowski, C. (eds) Stress Responses. Methods in Molecular Biology, vol 1292. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2522-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2522-3_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2521-6

  • Online ISBN: 978-1-4939-2522-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics