Skip to main content

Methods for Studying ER Stress and UPR Markers in Human Cells

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1292))

Abstract

Many experimentally induced or disease-related cellular dysfunctions stress the endoplasmic reticulum, commonly resulting in an accumulation of unfolded proteins in the ER lumen which is sensed by three ER-resident transmembrane proteins, PERK, ATF6, and IRE1. Their activation by such ER stress affects the unfolded protein response, which consists of a shutoff of protein translation and at the same time the switching-on of specific transcription factors that control genes which function to reduce the burden of unfolded proteins to the ER. Here, we describe two sets of methods for monitoring the occurrence of ER stress and UPR signaling in human cells by analyzing markers of activation of all three ER stress sensor proteins. The first set of methods is based on the qualitative and quantitative analysis of UPR-induced transcripts by qPCR. The second set of methods consists of Western blot-based analysis of UPR-induced proteins or protein modifications. Their combined analysis allows assessment of activation of all three ER stress-activated signaling pathways that in combination are characteristic for the UPR.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  2. Jager R, Bertrand MJ, Gorman AM et al (2012) The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol Cell 104:259–270

    Article  CAS  PubMed  Google Scholar 

  3. Harding HP, Novoa I, Zhang Y et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  CAS  PubMed  Google Scholar 

  4. Ma Y, Brewer JW, Diehl JA et al (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351–1365

    Article  CAS  PubMed  Google Scholar 

  5. Palam LR, Baird TD, Wek RC (2011) Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem 286:10939–10949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yoshida H, Okada T, Haze K et al (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20:6755–6767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  8. Cawley K, Deegan S, Samali A et al (2011) Assays for detecting the unfolded protein response. Methods Enzymol 490:31–51

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto K, Yoshida H, Kokame K et al (2004) Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J Biochem 136:343–350

    Article  CAS  PubMed  Google Scholar 

  10. Donnelly N, Gorman AM, Gupta S et al (2013) The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci 70:3493–3511

    Article  CAS  PubMed  Google Scholar 

  11. Martinon F, Chen X, Lee AH et al (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11:411–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cawley K, Logue SE, Gorman AM et al (2013) Disruption of microRNA biogenesis confers resistance to ER stress-induced cell death upstream of the mitochondrion. PLoS One 8(8):e73870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the members of our groups, in particular Patricia Cleary for the help with the preparation of figures and Lisa Vincenz who generated Fig. 1b. Figure 2 is an adaptation of a portion of Fig. 4 in Cawley et al., PloS One 2013, 8: e73870. Our work is funded by grants from BELSPO, Belgium, and the Breast Cancer Campaign (2010NovPR13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Jäger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kennedy, D., Samali, A., Jäger, R. (2015). Methods for Studying ER Stress and UPR Markers in Human Cells. In: Oslowski, C. (eds) Stress Responses. Methods in Molecular Biology, vol 1292. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2522-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2522-3_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2521-6

  • Online ISBN: 978-1-4939-2522-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics