Advertisement

Lentiviral Transduction of Mammary Epithelial Cells

  • Richard IggoEmail author
  • Elodie Richard
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1293)

Abstract

Lentiviral vectors are the workhorses of modern cell biology. They can infect a wide variety of cells including nondividing cells and stem cells. They integrate into the genome of infected cells leading to stable expression. It is easy to transduce 100 % of the cells in a culture and possible to infect cells simultaneously with multiple vectors, greatly facilitating studies on malignant transformation. We present simple protocols to produce and titrate lentiviral vectors, infect mammary epithelial cells, and check for contamination with replication-competent viruses.

Key words

Lentivirus Transfection Infection 

Notes

Acknowledgements

We thank former members of the lab, in particular Stephan Duss, for help in developing these protocols and the French Cancer Ligue (“Equipe Labellisee Ligue Contre le Cancer 2011”) for financial support.

1References 1

  1. 1.
    Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267PubMedCrossRefGoogle Scholar
  2. 2.
    Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93(21):11382–11388PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873–9880PubMedCentralPubMedGoogle Scholar
  4. 4.
    Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72(11):8463–8471PubMedCentralPubMedGoogle Scholar
  5. 5.
    Duss S, Andre S, Nicoulaz AL, Fiche M, Bonnefoi H, Brisken C, Iggo RD (2007) An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Res 9(3):R38PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Escarpe P, Zayek N, Chin P, Borellini F, Zufferey R, Veres G, Kiermer V (2003) Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 8(2):332–341PubMedCrossRefGoogle Scholar
  7. 7.
    Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, Martinache C, Rieux-Laucat F, Latour S, Belohradsky BH, Leiva L, Sorensen R, Debre M, Casanova JL, Blanche S, Durandy A, Bushman FD, Fischer A, Cavazzana-Calvo M (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363(4):355–364. doi: 10.1056/NEJMoa1000164 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34(3):263–264PubMedCrossRefGoogle Scholar
  9. 9.
    Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil PD, Chatel L, Bisiaux A, Albert ML, Strambio-De-Castillia C, Mothes W, Pizzato M, Grutter MG, Luban J (2011) TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472(7343):361–365. doi: 10.1038/nature09976 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13(3):223–228. doi: 10.1038/ni.2236 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424(6944):99–103. doi: 10.1038/nature01709 PubMedCrossRefGoogle Scholar
  12. 12.
    Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, Schoggins JW, Rice CM, Yamashita M, Hatziioannou T, Bieniasz PD (2013) MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502(7472):563–566. doi: 10.1038/nature12653 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Pebernard S, Iggo RD (2004) Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 72(2–3):103–111PubMedCrossRefGoogle Scholar
  14. 14.
    Moiani A, Paleari Y, Sartori D, Mezzadra R, Miccio A, Cattoglio C, Cocchiarella F, Lidonnici MR, Ferrari G, Mavilio F (2012) Lentiviral vector integration in the human genome induces alternative splicing and generates aberrant transcripts. J Clin Invest 122(5):1653–1666. doi: 10.1172/JCI61852 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC New York 2015

Authors and Affiliations

  1. 1.Bergonié Cancer InstituteUniversity of BordeauxBordeauxFrance

Personalised recommendations