Advertisement

A Protocol for Studying Embryonic Mammary Progenitor Cells During Mouse Mammary Primordial Development in Explant Culture

  • Naoko Kogata
  • Beatrice A. HowardEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1293)

Abstract

Embryonic explant culture is a powerful technique to observe tissue morphogenesis ex vivo, and is particularly useful for monitoring embryonic mammary gland development. It has been established that mammary cell lineage specification occurs during embryogenesis, although much remains to be elucidated with respect to how this occurs. During mammary specification, mammary progenitor cells are formed. Embryonic mammary development can proceed and be monitored in embryonic explant culture. Studies using explant culture will greatly enhance our understanding of the cellular mechanisms that regulate embryonic mammary primordial development and mammary progenitor cell specification. We present a protocol for culturing explants from mid-gestation mouse embryos so that morphogenetic processes and mammary epithelial progenitor cells can be studied during embryonic mammary development ex vivo.

Key words

Embryonic explant culture Embryonic mammary progenitor cell Mammary primordium Mammary-forming region s-SHIP-GFP reporter mice 

Notes

Acknowledgement

This work was funded by Breakthrough Breast Cancer Research.

References

  1. 1.
    Propper AY, Howard BA, Veltmaat JM (2013) Prenatal morphogenesis of mammary glands in mouse and rabbit. J Mammary Gland Biol Neoplasia 18(2):93–104. doi: 10.1007/s10911-013-9298-0 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479(7372):189–193. doi: 10.1038/nature10573 PubMedCrossRefGoogle Scholar
  3. 3.
    van Amerongen R, Bowman AN, Nusse R (2012) Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11(3):387–400. doi: 10.1016/j.stem.2012.05.023 PubMedCrossRefGoogle Scholar
  4. 4.
    Makarem M, Kannan N, Nguyen LV, Knapp DJ, Balani S, Prater MD, Stingl J, Raouf A, Nemirovsky O, Eirew P, Eaves CJ (2013) Developmental changes in the in vitro activated regenerative activity of primitive mammary epithelial cells. PLoS Biol 11(8):e1001630. doi: 10.1371/journal.pbio.1001630 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Balinsky BI (1950) On the prenatal growth of the mammary gland rudiment in the mouse. J Anat 84(3):227–235PubMedCentralPubMedGoogle Scholar
  6. 6.
    Balinsky BI (1952) I.—On the developmental processes in mammary glands and other epidermal structures. Earth Environ Sci Trans R Soc Edinb 62(01):1–31. doi: 10.1017/S0080456800009224 CrossRefGoogle Scholar
  7. 7.
    Kratochwil K, Schwartz P (1976) Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue for testosterone. Proc Natl Acad Sci U S A 73(11):4041–4044PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Voutilainen M, Lindfors PH, Mikkola ML (2013) Protocol: ex vivo culture of mouse embryonic mammary buds. J Mammary Gland Biol Neoplasia 18(2):239–245. doi: 10.1007/s10911-013-9288-2 PubMedCrossRefGoogle Scholar
  9. 9.
    Trowell OA (1959) The culture of mature organs in a synthetic medium. Exp Cell Res 16(1):118–147PubMedCrossRefGoogle Scholar
  10. 10.
    Rohrschneider LR, Custodio JM, Anderson TA, Miller CP, Gu H (2005) The intron 5/6 promoter region of the ship1 gene regulates expression in stem/progenitor cells of the mouse embryo. Dev Biol 283(2):503–521. doi: 10.1016/j.ydbio.2005.04.032, S0012-1606(05)00270-8 [pii]PubMedCrossRefGoogle Scholar
  11. 11.
    Moriyama A, Kii I, Sunabori T, Kurihara S, Takayama I, Shimazaki M, Tanabe H, Oginuma M, Fukayama M, Matsuzaki Y, Saga Y, Kudo A (2007) GFP transgenic mice reveal active canonical Wnt signal in neonatal brain and in adult liver and spleen. Genesis 45(2):90–100. doi: 10.1002/dvg.20268 PubMedCrossRefGoogle Scholar
  12. 12.
    Hadjantonakis AK, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4:33. doi: 10.1186/1472-6750-4-33, 1472-6750-4-33 [pii]PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC New York 2015

Authors and Affiliations

  1. 1.Division of Breast Cancer Research, Breakthrough Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK

Personalised recommendations