Skip to main content

Breast Cancer Stem Cells: Current Advances and Clinical Implications

  • Protocol
Mammary Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1293))

Abstract

There is substantial evidence that many cancers, including breast cancer, are driven by a population of cells that display stem cell properties. These cells, termed cancer stem cells (CSCs) or tumor initiating cells, not only drive tumor initiation and growth but also mediate tumor metastasis and therapeutic resistance. In this chapter, we summarize current advances in CSC research with a major focus on breast CSCs (BCSCs). We review the prevailing methods to isolate and characterize BCSCs and recent evidence documenting their cellular origins and phenotypic plasticity that enables them to transition between mesenchymal and epithelial-like states. We describe in vitro and clinical evidence that these cells mediate metastasis and treatment resistance in breast cancer, the development of novel strategies to isolate circulating tumor cells (CTCs) that contain CSCs and the use of patient-derived xenograft (PDX) models in preclinical breast cancer research. Lastly, we highlight several signaling pathways that regulate BCSC self-renewal and describe clinical implications of targeting these cells for breast cancer treatment. The development of strategies to effectively target BCSCs has the potential to significantly improve the outcomes for patients with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sternlicht MD et al (2006) Hormonal and local control of mammary branching morphogenesis. Differentiation 74(7):365–381

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Hinck L, Silberstein GB (2005) Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 7(6):245–251

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Hennighausen L, Robinson GW (2005) Information networks in the mammary gland. Nat Rev Mol Cell Biol 6(9):715–725

    CAS  PubMed  Google Scholar 

  4. Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev Cancer 3(11):832–844

    CAS  PubMed  Google Scholar 

  5. Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125(10):1921–1930

    CAS  PubMed  Google Scholar 

  6. Smith GH (1996) Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 39(1):21–31

    CAS  PubMed  Google Scholar 

  7. Asselin-Labat ML et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9(2):201–209

    CAS  PubMed  Google Scholar 

  8. Stingl J et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439(7079):993–997

    CAS  PubMed  Google Scholar 

  9. Shackleton M et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88

    CAS  PubMed  Google Scholar 

  10. Sleeman KE et al (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8(1):R7

    PubMed Central  PubMed  Google Scholar 

  11. Shipitsin M et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11(3):259–273

    CAS  PubMed  Google Scholar 

  12. Villadsen R et al (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177(1):87–101

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Lim E et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913

    CAS  PubMed  Google Scholar 

  14. Eirew P et al (2008) A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med 14(12):1384–1389

    CAS  PubMed  Google Scholar 

  15. Keller PJ et al (2011) Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci U S A 109:2772–2777

    PubMed Central  PubMed  Google Scholar 

  16. Visvader JE (2009) Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23(22):2563–2577

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    CAS  PubMed  Google Scholar 

  18. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66(4):1883–1890, discussion 1895-6

    CAS  PubMed  Google Scholar 

  19. Liu S, Wicha MS (2010) Targeting breast cancer stem cells. J Clin Oncol 28(25):4006–4012

    CAS  PubMed  Google Scholar 

  20. Charafe-Jauffret E et al (2008) Cancer stem cells in breast: current opinion and future challenges. Pathobiology 75(2):75–84

    PubMed Central  PubMed  Google Scholar 

  21. Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Ginestier C et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Liu S et al (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports 2(1):78–91

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    CAS  PubMed  Google Scholar 

  25. Collins AT et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951

    CAS  PubMed  Google Scholar 

  26. Patrawala L et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708

    CAS  PubMed  Google Scholar 

  27. O’Brien CA et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    PubMed  Google Scholar 

  28. Ricci-Vitiani L et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    CAS  PubMed  Google Scholar 

  29. Li C et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    CAS  PubMed  Google Scholar 

  30. Ma S et al (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132(7):2542–2556

    CAS  PubMed  Google Scholar 

  31. Ma S et al (2010) MiR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7(6):694–707

    CAS  PubMed  Google Scholar 

  32. Kim CF et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835

    CAS  PubMed  Google Scholar 

  33. Prince ME et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104(3):973–978

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Mukherjee S (2010) The emperor of all maladies: a biography of cancer. 1st Scribner hardcover ed, vol 14. Scribner, New York, NY, p 571, 8 p. of plates

    Google Scholar 

  35. Huntly BJ, Gilliland DG (2005) Cancer biology: summing up cancer stem cells. Nature 435(7046):1169–1170

    CAS  PubMed  Google Scholar 

  36. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51(1):1–28

    PubMed  Google Scholar 

  37. Xu Q et al (2009) Isolation of tumour stem-like cells from benign tumours. Br J Cancer 101(2):303–311

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Clay MR et al (2010) Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck 32(9):1195–1201

    PubMed Central  PubMed  Google Scholar 

  39. Silva IA et al (2011) Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res 71(11):3991–4001

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Krishnamurthy S et al (2010) Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 70(23):9969–9978

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Fang D et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337

    CAS  PubMed  Google Scholar 

  42. Quintana E et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Roesch A et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141(4):583–594

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Boiko AD et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466(7302):133–137

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Luo Y et al (2012) ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30(10):2100–2113

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Kelly PN et al (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317(5836):337

    CAS  PubMed  Google Scholar 

  47. Charafe-Jauffret E et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Charafe-Jauffret E et al (2013) ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. Cancer Res 73(24):7290–7300

    CAS  PubMed  Google Scholar 

  49. Pece S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73

    CAS  PubMed  Google Scholar 

  50. Bunting KD (2002) ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20(1):11–20

    CAS  PubMed  Google Scholar 

  51. Hadnagy A et al (2006) SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 312(19):3701–3710

    CAS  PubMed  Google Scholar 

  52. Hirschmann-Jax C et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101(39):14228–14233

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 101(3):781–786

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Clarke RB et al (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277(2):443–456

    CAS  PubMed  Google Scholar 

  55. Alvi AJ et al (2003) Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 5(1):R1–R8

    PubMed Central  PubMed  Google Scholar 

  56. Clayton H, Titley I, Vivanco M (2004) Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 297(2):444–460

    CAS  PubMed  Google Scholar 

  57. Welm BE et al (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245(1):42–56

    CAS  PubMed  Google Scholar 

  58. Patrawala L et al (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65(14):6207–6219

    CAS  PubMed  Google Scholar 

  59. Britton KM et al (2012) Breast cancer, side population cells and ABCG2 expression. Cancer Lett 323(1):97–105

    CAS  PubMed  Google Scholar 

  60. Nakanishi T et al (2010) Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling. Br J Cancer 102(5):815–826

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Marotta LL et al (2011) The JAK2/STAT3 signaling pathway is required for growth of CD44CD24 stem cell-like breast cancer cells in human tumors. J Clin Invest 121(7):2723–2735

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Honeth G et al (2008) The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10(3):R53

    PubMed Central  PubMed  Google Scholar 

  64. Meyer MJ et al (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 70(11):4624–4633

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Friedrichs K et al (1995) High expression level of alpha 6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res 55(4):901–906

    CAS  PubMed  Google Scholar 

  66. Lipscomb EA et al (2005) The alpha6beta4 integrin maintains the survival of human breast carcinoma cells in vivo. Cancer Res 65(23):10970–10976

    CAS  PubMed  Google Scholar 

  67. Chute JP et al (2006) Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci U S A 103(31):11707–11712

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Storms RW et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A 96(16):9118–9123

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ludeman SM (1999) The chemistry of the metabolites of cyclophosphamide. Curr Pharm Des 5(8):627–643

    CAS  PubMed  Google Scholar 

  70. Cheung AM et al (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 21(7):1423–1430

    CAS  PubMed  Google Scholar 

  71. Sullivan JP et al (2010) Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 70(23):9937–9948

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Huang EH et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69(8):3382–3389

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Carpentino JE et al (2009) Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res 69(20):8208–8215

    CAS  PubMed Central  PubMed  Google Scholar 

  74. van den Hoogen C et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70(12):5163–5173

    PubMed  Google Scholar 

  75. Dontu G et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270

    CAS  PubMed Central  PubMed  Google Scholar 

  76. D’Angelo RC, Wicha MS (2010) Stem cells in normal development and cancer. Prog Mol Biol Transl Sci 95:113–158

    PubMed  Google Scholar 

  77. Kusumbe AP, Bapat SA (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69(24):9245–9253

    CAS  PubMed  Google Scholar 

  78. Hendrikx PJ et al (1996) Homing of fluorescently labeled murine hematopoietic stem cells. Exp Hematol 24(2):129–140

    CAS  PubMed  Google Scholar 

  79. Lanzkron SM, Collector MI, Sharkis SJ (1999) Homing of long-term and short-term engrafting cells in vivo. Ann N Y Acad Sci 872:48–54, discussion 54-6

    CAS  PubMed  Google Scholar 

  80. Askenasy N, Farkas DL (2002) Optical imaging of PKH-labeled hematopoietic cells in recipient bone marrow in vivo. Stem Cells 20(6):501–513

    PubMed  Google Scholar 

  81. Cicalese A et al (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138(6):1083–1095

    CAS  PubMed  Google Scholar 

  82. Lassailly F, Griessinger E, Bonnet D (2010) “Microenvironmental contaminations” induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking. Blood 115(26):5347–5354

    CAS  PubMed  Google Scholar 

  83. Liu S, Clouthier SG, Wicha MS (2012) Role of microRNAs in the regulation of breast cancer stem cells. J Mammary Gland Biol Neoplasia 17(1):15–21

    PubMed Central  PubMed  Google Scholar 

  84. Liu S et al (2012) MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet 8(6):e1002751

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15(6):740–746

    CAS  PubMed  Google Scholar 

  86. Yang J et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    CAS  PubMed  Google Scholar 

  87. Wu Y et al (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15(5):416–428

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Yang MH et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3):295–305

    CAS  PubMed  Google Scholar 

  89. Samavarchi-Tehrani P et al (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7(1):64–77

    CAS  PubMed  Google Scholar 

  90. Brabletz T (2012) To differentiate or not: routes towards metastasis. Nat Rev Cancer 12(6):425–436

    CAS  PubMed  Google Scholar 

  91. Tsai JH et al (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22(6):725–736

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Ocana OH et al (2012) Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22(6):709–724

    CAS  PubMed  Google Scholar 

  93. Malanchi I et al (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89

    CAS  Google Scholar 

  94. Korpal M et al (2011) Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17(9):1101–1108

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Stankic M et al (2013) TGF-beta-Id1 signaling opposes Twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition. Cell Rep 5(5):1228–1242

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Herschkowitz JI et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76

    PubMed Central  PubMed  Google Scholar 

  97. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    CAS  PubMed  Google Scholar 

  98. Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Sotiriou C et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A 100(18):10393–10398

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Chang JC et al (2005) Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. J Clin Oncol 23(6):1169–1177

    CAS  PubMed  Google Scholar 

  101. Creighton CJ et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 106(33):13820–13825

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Molyneux G et al (2010) BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7(3):403–417

    CAS  PubMed  Google Scholar 

  103. Proia TA et al (2011) Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 8(2):149–163

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Keller PJ et al (2012) Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci U S A 109(8):2772–2777

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Van Keymeulen A et al (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479(7372):189–193

    PubMed  Google Scholar 

  106. Jeselsohn R et al (2010) Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell 17(1):65–76

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Liu S et al (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A 105(5):1680–1685

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Lagadec C et al (2010) Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res 12(1):R13

    PubMed Central  PubMed  Google Scholar 

  109. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785

    PubMed  Google Scholar 

  110. Karimi-Busheri F et al (2010) Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Res 12(3):R31

    PubMed Central  PubMed  Google Scholar 

  111. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25

    PubMed Central  PubMed  Google Scholar 

  112. Shafee N et al (2008) Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 68(9):3243–3250

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Woodward WA et al (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 104(2):618–623

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Diehn M et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Yu F et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–23

    CAS  PubMed  Google Scholar 

  116. Zielske SP et al (2011) Ablation of breast cancer stem cells with radiation. Transl Oncol 4(4):227–233

    PubMed Central  PubMed  Google Scholar 

  117. Li X et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672–679

    CAS  PubMed  Google Scholar 

  118. Korkaya H et al (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27(47):6120–6130

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Tanei T et al (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15(12):4234–4241

    CAS  PubMed  Google Scholar 

  120. Behbod F et al (2006) Transcriptional profiling of mammary gland side population cells. Stem Cells 24(4):1065–1074

    CAS  PubMed  Google Scholar 

  121. Ithimakin S et al (2013) HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab. Cancer Res 73(5):1635–1646

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Sladek NE (2003) Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 17(1):7–23

    CAS  PubMed  Google Scholar 

  123. Su Y et al (2010) Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev 19(2):327–337

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Kim MP et al (2011) ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One 6(6):e20636

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Landen CN Jr et al (2010) Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 9(12):3186–3199

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Magni M et al (1996) Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood 87(3):1097–1103

    CAS  PubMed  Google Scholar 

  127. Moreb J et al (1996) Overexpression of the human aldehyde dehydrogenase class I results in increased resistance to 4-hydroperoxycyclophosphamide. Cancer Gene Ther 3(1):24–30

    CAS  PubMed  Google Scholar 

  128. Moreb JS et al (2000) Expression of antisense RNA to aldehyde dehydrogenase class-1 sensitizes tumor cells to 4-hydroperoxycyclophosphamide in vitro. J Pharmacol Exp Ther 293(2):390–396

    CAS  PubMed  Google Scholar 

  129. Sun QL et al (2011) Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol. J Cancer Res Clin Oncol 137(3):521–532

    CAS  PubMed  Google Scholar 

  130. Sladek NE et al (2002) Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: a retrospective study. Rational individualization of oxazaphosphorine-based cancer chemotherapeutic regimens. Cancer Chemother Pharmacol 49(4):309–321

    CAS  PubMed  Google Scholar 

  131. Croker AK, Allan AL (2012) Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44(+) human breast cancer cells. Breast Cancer Res Treat 133(1):75–87

    CAS  PubMed  Google Scholar 

  132. Ward JF (1985) Biochemistry of DNA lesions. Radiat Res Suppl 8:S103–S111

    CAS  PubMed  Google Scholar 

  133. Powell S, McMillan TJ (1990) DNA damage and repair following treatment with ionizing radiation. Radiother Oncol 19(2):95–108

    CAS  PubMed  Google Scholar 

  134. Kryston TB et al (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711(1–2):193–201

    CAS  PubMed  Google Scholar 

  135. Smith J et al (2000) Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci U S A 97(18):10032–10037

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Ito K et al (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431(7011):997–1002

    CAS  PubMed  Google Scholar 

  137. Ito K et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12(4):446–451

    CAS  PubMed  Google Scholar 

  138. Tothova Z et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2):325–339

    CAS  PubMed  Google Scholar 

  139. Miyamoto K et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1(1):101–112

    CAS  PubMed  Google Scholar 

  140. Guzman ML et al (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105(11):4163–4169

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    CAS  PubMed  Google Scholar 

  142. Yin H, Glass J (2011) The phenotypic radiation resistance of CD44+/CD24(-or low) breast cancer cells is mediated through the enhanced activation of ATM signaling. PLoS One 6(9):e24080

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Zhang M, Atkinson RL, Rosen JM (2010) Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci U S A 107(8):3522–3527

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4(1):33–45

    CAS  PubMed  Google Scholar 

  145. Cheng C, Yaffe MB, Sharp PA (2006) A positive feedback loop couples Ras activation and CD44 alternative splicing. Genes Dev 20(13):1715–1720

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Orian-Rousseau V et al (2002) CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 16(23):3074–3086

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Sherman LS et al (2000) CD44 enhances neuregulin signaling by Schwann cells. J Cell Biol 150(5):1071–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Bourguignon LY et al (1997) Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J Biol Chem 272(44):27913–27918

    CAS  PubMed  Google Scholar 

  149. Draffin JE et al (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64(16):5702–5711

    CAS  PubMed  Google Scholar 

  150. Hiraga T, Ito S, Nakamura H (2013) Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res 73(13):4112–4122

    CAS  PubMed  Google Scholar 

  151. Brown RL et al (2011) CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 121(3):1064–1074

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Kouros-Mehr H et al (2008) GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13(2):141–152

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Schabath H et al (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325

    CAS  PubMed  Google Scholar 

  154. Cojoc M et al (2013) Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther 6:1347–1361

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Sheridan C et al (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8(5):R59

    PubMed Central  PubMed  Google Scholar 

  156. Liu R et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226

    CAS  PubMed  Google Scholar 

  157. Balic M et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12(19):5615–5621

    CAS  PubMed  Google Scholar 

  158. Liu H et al (2010) Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A 107(42):18115–18120

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Theodoropoulos PA et al (2010) Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett 288(1):99–106

    CAS  PubMed  Google Scholar 

  160. Charafe-Jauffret E et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16(1):45–55

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Liu S et al (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Lianidou ES, Markou A (2011) Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clin Chem 57(9):1242–1255

    CAS  PubMed  Google Scholar 

  163. Murray NP et al (2012) Redefining micrometastasis in prostate cancer: a comparison of circulating prostate cells, bone marrow disseminated tumor cells and micrometastasis—implications in determining local or systemic treatment for biochemical failure after radical prostatectomy. Int J Mol Med 30(4):896–904

    CAS  PubMed  Google Scholar 

  164. Cristofanilli M et al (2005) Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol 23(7):1420–1430

    PubMed  Google Scholar 

  165. Joosse SA, Pantel K (2013) Biologic challenges in the detection of circulating tumor cells. Cancer Res 73(1):8–11

    CAS  PubMed  Google Scholar 

  166. Maheswaran S et al (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359(4):366–377

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Baccelli I et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544

    CAS  PubMed  Google Scholar 

  169. Zhang L et al (2013) The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 5(180):180ra48

    PubMed  Google Scholar 

  170. Yu M et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Pestrin M et al (2012) Final results of a multicenter phase II clinical trial evaluating the activity of single-agent lapatinib in patients with HER2-negative metastatic breast cancer and HER2-positive circulating tumor cells. A proof-of-concept study. Breast Cancer Res Treat 134(1):283–289

    CAS  PubMed  Google Scholar 

  172. Giordano A et al (2011) Artificial neural network analysis of circulating tumor cells in metastatic breast cancer patients. Breast Cancer Res Treat 129(2):451–458

    PubMed  Google Scholar 

  173. Cohen SJ et al (2009) Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann Oncol 20(7):1223–1229

    CAS  PubMed  Google Scholar 

  174. Olmos D et al (2009) Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann Oncol 20(1):27–33

    CAS  PubMed  Google Scholar 

  175. Allard WJ et al (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904

    PubMed  Google Scholar 

  176. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    CAS  PubMed  Google Scholar 

  177. Khandurina J et al (2000) Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem 72(13):2995–3000

    CAS  PubMed  Google Scholar 

  178. Erickson D et al (2004) Electrokinetically controlled DNA hybridization microfluidic chip enabling rapid target analysis. Anal Chem 76(24):7269–7277

    CAS  PubMed  Google Scholar 

  179. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110

    CAS  PubMed  Google Scholar 

  180. Gleghorn JP et al (2010) Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10(1):27–29

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Adams AA et al (2008) Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J Am Chem Soc 130(27):8633–8641

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Stott SL et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A 107(43):18392–18397

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Yoon HJ et al (2013) Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol 8(10):735–741

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Lin HK et al (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res 16(20):5011–5018

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Vona G et al (2004) Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology 39(3):792–797

    PubMed  Google Scholar 

  186. Zheng S et al (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162(2):154–161

    CAS  PubMed  Google Scholar 

  187. Zheng S et al (2011) 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed Microdevices 13(1):203–213

    PubMed  Google Scholar 

  188. Kuo JS et al (2010) Deformability considerations in filtration of biological cells. Lab Chip 10(7):837–842

    CAS  PubMed  Google Scholar 

  189. Zhou J, Papautsky I (2013) Fundamentals of inertial focusing in microchannels. Lab Chip 13(6):1121–1132

    CAS  PubMed  Google Scholar 

  190. Bhagat AA, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using Dean flows and differential migration. Lab Chip 8(11):1906–1914

    CAS  PubMed  Google Scholar 

  191. Hou HW et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3:1259

    PubMed Central  PubMed  Google Scholar 

  192. Ozkumur E et al (2013) Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 5(179):179ra47

    PubMed Central  PubMed  Google Scholar 

  193. Zhang W et al (2012) Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells. Proc Natl Acad Sci U S A 109(46):18707–18712

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Kuperwasser C et al (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A 101(14):4966–4971

    CAS  PubMed Central  PubMed  Google Scholar 

  195. DeRose YS et al (2011) Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17(11):1514–1520

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Zhang X et al (2013) A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 73(15):4885–4897

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Marangoni E et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13(13):3989–3998

    CAS  PubMed  Google Scholar 

  198. Beckhove P et al (2003) Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. Int J Cancer 105(4):444–453

    CAS  PubMed  Google Scholar 

  199. Bergamaschi A et al (2009) Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models. Mol Oncol 3(5–6):469–482

    CAS  PubMed  Google Scholar 

  200. du Manoir S et al (2013) Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse. Mol Oncol 8:431–43

    PubMed  Google Scholar 

  201. Clarke R et al (2001) Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacol Rev 53(1):25–71

    CAS  PubMed  Google Scholar 

  202. Cottu P et al (2012) Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res Treat 133(2):595–606

    CAS  PubMed  Google Scholar 

  203. Kabos P et al (2012) Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat 135(2):415–432

    CAS  PubMed  Google Scholar 

  204. Ginestier C et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19(56):6613–6626

    CAS  PubMed  Google Scholar 

  206. Redell MS, Tweardy DJ (2005) Targeting transcription factors for cancer therapy. Curr Pharm Des 11(22):2873–2887

    CAS  PubMed  Google Scholar 

  207. Chen Z, Han ZC (2008) STAT3: a critical transcription activator in angiogenesis. Med Res Rev 28(2):185–200

    CAS  PubMed  Google Scholar 

  208. Dave B et al (2012) Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model. PLoS One 7(8):e30207

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Noguera-Troise I et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444(7122):1032–1037

    CAS  PubMed  Google Scholar 

  210. Ridgway J et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444(7122):1083–1087

    CAS  PubMed  Google Scholar 

  211. Scehnet JS et al (2007) Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood 109(11):4753–4760

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Hoey T et al (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5(2):168–177

    CAS  PubMed  Google Scholar 

  213. Schott AF et al (2013) Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res 19(6):1512–1524

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Todaro M et al (2013) Erythropoietin activates cell survival pathways in breast cancer stem-like cells to protect them from chemotherapy. Cancer Res 73(21):6393–6400

    CAS  PubMed  Google Scholar 

  215. Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15(23):3059–3087

    CAS  PubMed  Google Scholar 

  216. Liu S et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66(12):6063–6071

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Kubo M et al (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64(17):6071–6074

    CAS  PubMed  Google Scholar 

  218. Tremblay MR et al (2008) Semisynthetic cyclopamine analogues as potent and orally bioavailable hedgehog pathway antagonists. J Med Chem 51(21):6646–6649

    CAS  PubMed  Google Scholar 

  219. Robarge KD et al (2009) GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett 19(19):5576–5581

    CAS  PubMed  Google Scholar 

  220. Olive KP et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24(11):2437–2447

    CAS  PubMed  Google Scholar 

  222. Roy M, Pear WS, Aster JC (2007) The multifaceted role of Notch in cancer. Curr Opin Genet Dev 17(1):52–59

    CAS  PubMed  Google Scholar 

  223. Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3(10):756–767

    CAS  PubMed  Google Scholar 

  224. Jhappan C et al (1992) Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 6(3):345–355

    CAS  PubMed  Google Scholar 

  225. Bouras T et al (2008) Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3(4):429–441

    CAS  PubMed  Google Scholar 

  226. Reedijk M et al (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65(18):8530–8537

    CAS  PubMed  Google Scholar 

  227. Harrison H et al (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70(2):709–718

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Zang S et al (2010) RNAi-mediated knockdown of Notch-1 leads to cell growth inhibition and enhanced chemosensitivity in human breast cancer. Oncol Rep 23(4):893–899

    CAS  PubMed  Google Scholar 

  229. Olsauskas-Kuprys R, Zlobin A, Osipo C (2013) Gamma secretase inhibitors of Notch signaling. Onco Targets Ther 6:943–955

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Lindsay J et al (2008) ErbB2 induces Notch1 activity and function in breast cancer cells. Clin Transl Sci 1(2):107–115

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Farnie G et al (2013) Combined inhibition of ErbB1/2 and Notch receptors effectively targets breast ductal carcinoma in situ (DCIS) stem/progenitor cell activity regardless of ErbB2 status. PLoS One 8(2):e56840

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Osipo C et al (2008) ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene 27(37):5019–5032

    CAS  PubMed  Google Scholar 

  233. Won HY et al (2012) Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway. FASEB J 26(12):5002–5013

    CAS  PubMed  Google Scholar 

  234. Rexer BN, Arteaga CL (2013) Optimal targeting of HER2-PI3K signaling in breast cancer: mechanistic insights and clinical implications. Cancer Res 73(13):3817–3820

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Nagata Y et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127

    CAS  PubMed  Google Scholar 

  236. Korkaya H et al (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7(6):e1000121

    PubMed Central  PubMed  Google Scholar 

  237. Junttila TT et al (2009) Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15(5):429–440

    CAS  PubMed  Google Scholar 

  238. Serra V et al (2008) NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68(19):8022–8030

    CAS  PubMed  Google Scholar 

  239. Andre F et al (2010) Phase I study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab. J Clin Oncol 28(34):5110–5115

    CAS  PubMed  Google Scholar 

  240. Chakrabarty A et al (2013) Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors. Cancer Res 73(3):1190–1200

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398

    CAS  PubMed  Google Scholar 

  242. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    CAS  PubMed  Google Scholar 

  243. Badders NM et al (2009) The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage. PLoS One 4(8):e6594

    PubMed Central  PubMed  Google Scholar 

  244. Bafico A et al (2004) An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6(5):497–506

    CAS  PubMed  Google Scholar 

  245. Klopocki E et al (2004) Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int J Oncol 25(3):641–649

    CAS  PubMed  Google Scholar 

  246. Nagahata T et al (2003) Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Sci 94(6):515–518

    CAS  PubMed  Google Scholar 

  247. Nakopoulou L et al (2006) Study of phospho-beta-catenin subcellular distribution in invasive breast carcinomas in relation to their phenotype and the clinical outcome. Mod Pathol 19(4):556–563

    CAS  PubMed  Google Scholar 

  248. Piva et al (2014) Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med 6:66–79

    Google Scholar 

  249. Li Y et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 100(26):15853–15858

    CAS  PubMed Central  PubMed  Google Scholar 

  250. Liu BY et al (2004) The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci U S A 101(12):4158–4163

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Conley SJ et al (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A 109(8):2784–2789

    CAS  PubMed Central  PubMed  Google Scholar 

  252. Yang ZQ et al (2009) Methylation-associated silencing of SFRP1 with an 8p11-12 amplification inhibits canonical and non-canonical WNT pathways in breast cancers. Int J Cancer 125(7):1613–1621

    CAS  PubMed Central  PubMed  Google Scholar 

  253. He B et al (2004) A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 6(1):7–14

    CAS  PubMed Central  PubMed  Google Scholar 

  254. DeAlmeida VI et al (2007) The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res 67(11):5371–5379

    CAS  PubMed  Google Scholar 

  255. Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7(2):139–147

    CAS  PubMed  Google Scholar 

  256. Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    CAS  PubMed  Google Scholar 

  257. Asselin-Labat ML et al (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465(7299):798–802

    CAS  PubMed  Google Scholar 

  258. Fillmore CM et al (2010) Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci U S A 107(50):21737–21742

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Pierce BL et al (2009) Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol 27(21):3437–3444

    CAS  PubMed Central  PubMed  Google Scholar 

  260. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    CAS  PubMed Central  PubMed  Google Scholar 

  261. Sansone P et al (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117(12):3988–4002

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Conze D et al (2001) Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res 61(24):8851–8858

    CAS  PubMed  Google Scholar 

  263. Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Korkaya H et al (2012) Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 47(4):570–584

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Germain D, Frank DA (2007) Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy. Clin Cancer Res 13(19):5665–5669

    CAS  PubMed  Google Scholar 

  266. Lin L et al (2013) Evaluation of STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24− subpopulations of breast cancer cells. PLoS One 8(12):e82821

    PubMed Central  PubMed  Google Scholar 

  267. Yu F et al (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29(29):4194–4204

    CAS  PubMed  Google Scholar 

  268. Shimono Y et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603

    CAS  PubMed Central  PubMed  Google Scholar 

  269. World Health Organization (2012) Cancer Fact Sheet N297. http://publications.cancerresearchuk.org/downloads/product/CS_REPORT_WORLD.pdf

  270. Phend C (2011) Breast cervical cancer kill 625,000 women each year. (3/25/12). http://abcnews.go.com/Health/breast-cervical-cancers-rise-globally/story?id=14529241

  271. National Cancer Institute. Surveillance epidemiology and end results: SEER stat fact sheets. Accessed 31 Mar 12. http://seer.cancer.gov/

  272. American Cancer Society. Cancer facts and figures 2012. Accessed 31 Mar 12. http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2012/

  273. Perez EA et al (2010) HER2 and chromosome 17 effect on patient outcome in the N9831 adjuvant trastuzumab trial. J Clin Oncol 28(28):4307–4315

    PubMed Central  PubMed  Google Scholar 

  274. Recht A et al (1996) The sequencing of chemotherapy and radiation therapy after conservative surgery for early-stage breast cancer. N Engl J Med 334(21):1356–1361

    CAS  PubMed  Google Scholar 

  275. Slamon DJ et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792

    CAS  PubMed  Google Scholar 

  276. Hedge SR, Sun W, Lynch JP (2008) Systemic and targeted therapy for advanced colon cancer. Expert Rev Gastroenterol Hepatol 2(1):135–149

    Google Scholar 

  277. Silvestri GA, Rivera MP (2005) Targeted therapy for the treatment of advanced non-small cell lung cancer: a review of the epidermal growth factor receptor antagonists. Chest 128(6):3975–3984

    CAS  PubMed  Google Scholar 

  278. Sherbenou DW, Druker BJ (2007) Applying the discovery of the Philadelphia chromosome. J Clin Invest 117(8):2067–2074

    CAS  PubMed Central  PubMed  Google Scholar 

  279. Sakariassen PO, Immervoll H, Chekenya M (2007) Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia 9(11):882–892

    CAS  PubMed Central  PubMed  Google Scholar 

  280. Brekelmans CT et al (2007) Tumour characteristics, survival and prognostic factors of hereditary breast cancer from BRCA2-, BRCA1- and non-BRCA1/2 families as compared to sporadic breast cancer cases. Eur J Cancer 43(5):867–876

    CAS  PubMed  Google Scholar 

  281. Korkaya H, Wicha MS (2007) Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 21(5):299–310

    CAS  PubMed  Google Scholar 

  282. Houston S (2011) Stemming the tide. ChemistryWorld.org. http://www.rsc.org/chemistryworld/restricted/2011/September/StemmingTheTide.asp

  283. Markey K (2009) Firms seek to prove cancer stem cell hypothesis. Bio Market Trends. 29(18). http://www.genengnews.com/gen-articles/firms-seek-to-prove-cancer-stem-cell-hypothesis/3066/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max S. Wicha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media LLC New York

About this protocol

Cite this protocol

Luo, M. et al. (2015). Breast Cancer Stem Cells: Current Advances and Clinical Implications. In: Vivanco, M. (eds) Mammary Stem Cells. Methods in Molecular Biology, vol 1293. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2519-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2519-3_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2518-6

  • Online ISBN: 978-1-4939-2519-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics