Nanomechanical Characterization of Living Mammary Tissues by Atomic Force Microscopy

  • Marija PlodinecEmail author
  • Roderick Y. H. Lim
Part of the Methods in Molecular Biology book series (MIMB, volume 1293)


The mechanical properties of living cells and tissues are important for a variety of functional processes in vivo, including cell adhesion, migration, proliferation and differentiation. Changes in mechano-cellular phenotype, for instance, are associated with cancer progression. Atomic force microscopy (AFM) is an enabling technique that topographically maps and quantifies the mechanical properties of complex biological matter in physiological aqueous environments at the nanometer length scale. Recently we applied AFM to spatially resolve the distribution of nanomechanical stiffness across human breast cancer biopsies in comparison to healthy tissue and benign tumors. This led to the finding that AFM provides quantitative mechano-markers that may have translational significance for the clinical diagnosis of cancer. Here, we provide a comprehensive description of sample preparation methodology, instrumentation, data acquisition and analysis that allows for the quantitative nanomechanical profiling of unadulterated tissue at submicron spatial resolution and nano-Newton (nN) force sensitivity in physiological conditions.

Key words

Atomic Force Microscopy Sensitivity Spatial resolution Mechanobiology Cells Extracellular matrix Living mammary tissues Human breast biopsies Diagnosis Disease 



This work is funded by the Commission for Technology and Innovation (CTI) Project 11977.2 PFNM-NM; ARTIDIS ‘Automated and Reliable Tissue Diagnostics’ awarded to R.Y.H.L. in partnership with Nanosurf AG.

The authors thank Christian Räz, Christophe A. Monnier and Philipp Oertle for their contributions to this manuscript.

Competing financial interests: The University of Basel has filed patents on the technology and intellectual property related to this work based on the inventions of M.P. and R.Y.H.L.


  1. 1.
    Hoffman BD, Crocker JC (2009) Cell mechanics: dissecting the physical responses of cells to force. Annu Rev Biomed Eng 11:259–288PubMedCrossRefGoogle Scholar
  2. 2.
    Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34PubMedCrossRefGoogle Scholar
  3. 3.
    Mammoto T, Mammoto A, Ingber DE (2013) Mechanobiology and developmental control. Annu Rev Cell Dev Biol 29(29):27–61PubMedCrossRefGoogle Scholar
  4. 4.
    Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137:1407–1420PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Plodinec M, Schoenenberger CA (2010) Spatial organization acts on cell signaling: how physical force contributes to the development of cancer. Breast Cancer Res 12:308PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Chasiotis I, Fillmore HL, Gillies GT (2003) Atomic force microscopy measurement of cytostructural elements involved in the nanodynamics of tumour cell invasion. Nanotechnology 14:557–561CrossRefGoogle Scholar
  7. 7.
    Coughlin MF, Bielenberg DR, Lenormand G, Marinkovic M, Waghorne CG, Zetter BR, Fredberg JJ (2013) Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential. Clin Exp Metastasis 30:237–250PubMedCrossRefGoogle Scholar
  8. 8.
    Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11:512–522PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933PubMedCrossRefGoogle Scholar
  10. 10.
    Fuhrmann A, Staunton JR, Nandakumar V, Banyai N, Davies PCW, Ros R (2011) AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells. Phys Biol 8Google Scholar
  11. 11.
    Bastatas L, Martinez-Marin D, Matthews J, Hashem J, Lee YJ, Sennoune S, Filleur S, Martinez-Zaguilan R, Park S (2012) AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential. Biochim Biophys Acta 1820:1111–1120PubMedCrossRefGoogle Scholar
  12. 12.
    Cross SE, Jin YS, Lu QY, Rao JY, Gimzewski JK (2011) Green tea extract selectively targets nanomechanics of live metastatic cancer cells. Nanotechnology 22:215101PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Lekka M, Wiltowska-Zuber J (2009) Biomedical applications of AFM, Nano 2008: 2nd national conference on nanotechnology. J Phys Conf Ser 146:012023CrossRefGoogle Scholar
  14. 14.
    Darling EM, Zauscher S, Block JA, Guilak F (2007) A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 92:1784–1791PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783PubMedCrossRefGoogle Scholar
  16. 16.
    Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9:325–342PubMedCrossRefGoogle Scholar
  17. 17.
    Levental KR, Yu HM, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T (1998) Elastic moduli of breast and prostate tissues under compression. Ultrasonic Imaging 20:260–274PubMedCrossRefGoogle Scholar
  19. 19.
    Lopez JI, Kang I, You WK, McDonald DM, Weaver VM (2011) In situ force mapping of mammary gland transformation. Integr Biol UK 3:910–921CrossRefGoogle Scholar
  20. 20.
    Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, Hyotyla JT, Aebi U, Bentires-Alj M, Lim RY, Schoenenberger CA (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7:757–765PubMedCrossRefGoogle Scholar
  21. 21.
    Loparic M, Wirz D, Daniels AU, Raiteri R, VanLandingham MR, Guex G, Martin I, Aebi U, Stolz M (2010) Micro- and nanomechanical analysis of articular cartilage by indentation-type atomic force microscopy: validation with a gel-microfiber composite. Biophys J 98: 2731–2740PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Blache U, Silvan U, Plodinec M, Suetterlin R, Jakob R, Klebba I, Bentires-Alj M, Aebi U, Schoenenberger CA (2013) A tumorigenic actin mutant alters fibroblast morphology and multicellular assembly properties. Cytoskeleton 70:635–650PubMedCrossRefGoogle Scholar
  23. 23.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRefGoogle Scholar
  24. 24.
    Hay JL, Oliver WC, Bolshakov A, Pharr GM (1998) Using the ratio of loading slope and elastic stiffness to predict pile-up and constraint factor during indentation. Fundamentals of nanoindentation and nanotribology vol. 522. pp. 101–106Google Scholar
  25. 25.
    Plodinec M, Loparic M, Suetterlin R, Herrmann H, Aebi U, Schoenenberger CA (2011) The nanomechanical properties of rat fibroblasts are modulated by interfering with the vimentin intermediate filament system. J Struct Biol 174:476–484PubMedCrossRefGoogle Scholar
  26. 26.
    Mahaffy RE, Park S, Gerde E, Kas J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86:1777–1793PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC New York 2015

Authors and Affiliations

  1. 1.Biozentrum and The Swiss Nanoscience InstituteUniversity of BaselBaselSwitzerland
  2. 2.Biozentrum and The Swiss Nanoscience InstituteUniversity of BaselBaselSwitzerland

Personalised recommendations