Mammary Cancer Stem Cells Reinitiation Assessment at the Metastatic Niche: The Lung and Bone

  • Marc Guiu
  • Enrique J. Arenas
  • Sylwia Gawrzak
  • Milica Pavlovic
  • Roger R. GomisEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1293)


Mammary cancer stem cells (MCSC) have been operationally defined as cells that re-form secondary tumors upon transplantation into immunodeficient mice. Building on this observation, it has also been suggested that MCSCs are responsible for metastasis as well as evasion and resistance to therapeutic treatments. MCSC reinitiating potential is usually tested by implantation of limited amounts of cells orthotopically or subcutaneously, yet this poorly recapitulates the metastatic niche where truly metastatic reinitiation will occur. Herein, we describe the implantation of small amounts of MCSC selected populations in the bone (intra tibiae injection) and the lung (intra thoracic injection) to test for their metastatic reinitiation capabilities.

Key words

Mammary stem cells Metastasis Reinitiation Xenograft models Breast cancer 



M.P, S.G., and E.J.A. are supported by “La Caixa” PhD fellowship program. R.R.G. was supported by the Institució Catalana de Recerca i Estudis Avançats. Support and structural funds were provided by the BBVA foundation, Generalitat de Catalunya (2014 SGR 535) and the Spanish Ministerio de Ciencia e Innovación (MICINN) (SAF2013-46196) to R.R.G.


  1. 1.
    Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmuller G et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68PubMedCrossRefGoogle Scholar
  2. 2.
    Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC, Chambers AF, MacDonald IC (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60:2541–2546PubMedGoogle Scholar
  3. 3.
    Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Potten CS, Watson RJ, Williams GT, Tickle S, Roberts SA, Harris M, Howell A (1988) The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br J Cancer 58:163–170PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Russo J, Russo IH (2004) Development of the human breast. Maturitas 49:2–15PubMedCrossRefGoogle Scholar
  7. 7.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wicha MS (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A 105:1680–1685PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, Eaves CJ (2008) A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med 14:1384–1389PubMedCrossRefGoogle Scholar
  10. 10.
    Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177:87–101PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Petersen OW, Polyak K (2010) Stem cells in the human breast. Cold Spring Harb Perspect Biol 2:a003160PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, Elliott R, Scully S, Voura EB, Lacey DL et al (2000) The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103:41–50PubMedCrossRefGoogle Scholar
  13. 13.
    Schramek D, Sigl V, Penninger JM (2011) RANKL and RANK in sex hormone-induced breast cancer and breast cancer metastasis. Trends Endocrinol Metab 22:188–194PubMedCrossRefGoogle Scholar
  14. 14.
    Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, Pinkas J, Branstetter D, Dougall WC (2010) RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468:103–107PubMedCrossRefGoogle Scholar
  15. 15.
    Tarragona M, Pavlovic M, Arnal-Estape A, Urosevic J, Morales M, Guiu M, Planet E, Gonzalez-Suarez E, Gomis RR (2012) Identification of NOG as a specific breast cancer bone metastasis-supporting gene. J Biol Chem 287:21346–21355PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88PubMedCrossRefGoogle Scholar
  18. 18.
    Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140:62–73PubMedCrossRefGoogle Scholar
  19. 19.
    Gopalan A, Yu W, Sanders BG, Kline K (2013) Eliminating drug resistant breast cancer stem-like cells with combination of simvastatin and gamma-tocotrienol. Cancer Lett 328:285–296PubMedCrossRefGoogle Scholar
  20. 20.
    Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37:1125–1129PubMedCrossRefGoogle Scholar
  21. 21.
    Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massague J (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N, Kudo A (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem 285:2028–2039PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    von Holst A (2008) Tenascin C in stem cell niches: redundant, permissive or instructive? Cells Tissues Organs 188:170–177CrossRefGoogle Scholar
  24. 24.
    Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massague J (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17:867–874PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC New York 2015

Authors and Affiliations

  • Marc Guiu
    • 1
  • Enrique J. Arenas
    • 1
  • Sylwia Gawrzak
    • 1
  • Milica Pavlovic
    • 1
  • Roger R. Gomis
    • 1
    • 2
    Email author
  1. 1.Oncology ProgramInstitute for Research in Biomedicine (IRB-Barcelona)BarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations