Skip to main content

Compartmentalized Microfluidics for In Vitro Alzheimer’s Disease Studies

  • Protocol
  • First Online:
Microfluidic and Compartmentalized Platforms for Neurobiological Research

Part of the book series: Neuromethods ((NM,volume 103))

Abstract

Compartmentalized microfluidic devices are designed to engineer the cellular environment for cell cultures. The practical use of the compartmentalized chambers can be expanded to induce co-pathological cell cultures, where one cell population expresses a specific disease state, while being in direct-cell or metabolic contact to a second or third unaffected cell population. A typical example for co-pathological cell states in the brain is the well-known neurodegenerative Alzheimer’s disease (AD), which still lacks effective treatment approaches. In the brain, AD shows specific disease progression patterns from one functional brain region to another. However, in normal dissociated neuron cultures using petri dishes, the extraction of the progression patterns is very difficult. In this chapter, we describe the methodology to design and fabricate a compartmentalized microfluidic device and apply it to an in vitro AD model to mimic the key pathological hallmarks of AD, allowing us to study disease progression patterns from a “diseased” towards a “healthy” cell population. This derived co-pathological model of AD provides the ability to monitor time-variant changes in cell network morphology and electrophysiology during disease progression and may potentially be used for pharmaceutical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moller HJ, Graeber MB (1998) The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur Arch Psychiatr Clin Neurosci 248(3):111–122

    Article  CAS  Google Scholar 

  2. Dujardin S, Lecolle K, Caillierez R, Begard S, Zommer N, Lachaud C, Carrier S, Dufour N, Auregan G, Winderickx J, Hantraye P, Deglon N, Colin M, Buee L (2014) Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathol Commun 2:14

    Article  PubMed Central  PubMed  Google Scholar 

  3. Thies W, Bleiler L, Alzheimer’s Association (2013) Alzheimer’s disease facts and figures. J Alzheimer’s Assoc 9(2):208–245

    Google Scholar 

  4. Paulson JB, Ramsden M, Forster C et al (2008) Amyloid plaque and neurofibrillary tangle pathology in a regulatable mouse model of Alzheimer’s disease. Am J Pathol 173:762–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ward S, Himmelstein D, Lancia J, Binder L (2012) Tau oligomers and tau toxicity in neurodegenerative disease. Biochem Soc Trans 40:667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ittner LM, Götz J (2011) Amyloid-β and tau-a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):65–72

    Article  CAS  PubMed  Google Scholar 

  7. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716

    Article  CAS  PubMed  Google Scholar 

  8. Park J, Koito H, Li J, Han A (2009) Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed Microdevices 11(6):1145–1153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Campenot RB (1977) Local control of neurites development by nerve growth factor. Proc Natl Acad Sci U S A 74(10):4516–4519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Park JW, Kim HJ, Kang MW, Jeon NL (2013) Advances in microfluidics-based experimental methods for neuroscience research. Lab Chip 13(4):509–521

    Article  CAS  PubMed  Google Scholar 

  11. Pine JA (2006) History of MEA development. In: Baudry M, Taketani M (eds) Advances in network electrophysiology using multi-electrode arrays. Springer Press, New York, pp 3–23

    Chapter  Google Scholar 

  12. Garofalo M, Nieus T, Massobrio P, Martinoia S (2009) Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PLoS One 4:e6482

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dworak BJ, Wheeler BC (2009) Novel MEA platform with PDMS microtunnels enables the detection of action potential propagation from isolated axons in culture. Lab Chip 9(3):404–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kunze A, Lengacher S, Dirren E, Aebischer P, Magistretti PJ, Renaud P (2013) Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS. Integr Biol 5(7):964–975

    Article  CAS  Google Scholar 

  15. Kunze A (2012) Micro-engineering the cerebral cortical cell niche: a new cell culture tool for neuroscience research. PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

    Google Scholar 

  16. Kim P, Kwon KW, Park MC, Lee SH, Kim SM (2008) Soft lithography for microfluidics : a review. Biochip J 2(1):1–11

    Google Scholar 

  17. Belanger MC, Marois Y (2001) Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J Biomed Mater Res 58(5):467–477

    Article  CAS  PubMed  Google Scholar 

  18. Toepke MW, Beebe DJ (2006) PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6(12):1484–1486

    Article  CAS  PubMed  Google Scholar 

  19. Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5(12):1348–1354

    Article  CAS  PubMed  Google Scholar 

  20. Kunze A, Giugliano M, Valero A, Renaud P (2011) Micropatterning neural cell cultures in 3D with a multi-layered scaffold. Biomaterials 32(8):2088–2098

    Article  CAS  PubMed  Google Scholar 

  21. Blau A (2013) Cell adhesion promotion strategies for signal transduction enhancement in microelectrode array in vitro electrophysiology: an introductory overview and critical discussion. Curr Opin Colloid Interface Sci 18(5):481–492

    Article  CAS  Google Scholar 

  22. Sun Y, Huang Z, Liu W, Yang K, Sun K, Xing S, Wang D, Zhang W, Jiang X (2012) Surface coating as a key parameter in engineering neuronal network structures in vitro. Biointerphases 7(1–4):29

    PubMed  Google Scholar 

  23. Kunze A, Meissner R, Brando S, Renaud P (2011) Co-pathological connected primary neurons in a microfluidic device for Alzheimer studies. Biotechnol Bioeng 108(9):2241–2245

    Article  CAS  PubMed  Google Scholar 

  24. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50(6):823–839

    Article  CAS  PubMed  Google Scholar 

  25. Potter SM (2001) Distributed processing in cultured neuronal networks. In: Nicolelis MAL (ed) Progress in brain research: advances in neural population coding, vol 130. Elsevier, Amsterdam, pp 49–62

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by École Polytechnique Fédérale de Lausanne (EPFL). We would like to thank Dr. Sophie Pautot for technical support on neural cultures. Thank Dr. Marc Olivier Heuschkel for sharing the knowledge and technology about microelectrode arrays (MEAs). We warmly acknowledge Prof. Patrick Fraering and his Ph.D. student Sébastien Mosser for providing us cell source and advices to improve our cell culture technologies. In the end, a special thanks goes to Dr. Shun-Ho Huang for our successful collaborations on several topics. We also thank Mr. Gabriel Safar for the help with the manuscript. Dr. Anja Kunze thanks the Swiss National Science Foundation (SNSF) for supporting her research under the grant P300P2_147753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ren, Y., Kunze, A., Renaud, P. (2015). Compartmentalized Microfluidics for In Vitro Alzheimer’s Disease Studies. In: Biffi, E. (eds) Microfluidic and Compartmentalized Platforms for Neurobiological Research. Neuromethods, vol 103. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2510-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2510-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2509-4

  • Online ISBN: 978-1-4939-2510-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics