Husbandry of Spanish Ribbed Newts (Pleurodeles waltl)

  • Alberto Joven
  • Matthew Kirkham
  • András Simon
Part of the Methods in Molecular Biology book series (MIMB, volume 1290)


Research on urodele amphibians, such as newts, is constantly contributing to our understanding of fundamental biological processes. In the present chapter, we present detailed husbandry protocols for the Spanish ribbed newt (Pleurodeles waltl ). We describe the main phases of their life cycle, with emphasis on the progressive development of sensory, motor, and integration systems, which lead to the acquisition of specific stereotyped (and conditioned) behaviors. The methods are outlined to manage housing, feeding, handling, captive breeding, health monitoring, and euthanasia in this species under laboratory conditions. With minor changes, these protocols can also be applied to other species of urodele amphibians commonly used in laboratory research.

Key words

Salamander Housing Environmental enrichment Reproduction Breeding Larvae Development 



This work could not have been possible without the opportunities of working with various salamander species along the years, under different group leaders: Paschalina Kiriakopoulou-Sklavounou (AUTH, Greece), Agustin González (UCM, Spain), and Elly M. Tanaka (MPI-CBG, Germany). Also, many thanks to all the people ever involved in the caring of the different colonies and for interesting conversations that resulted in improvements of the protocols, with special thanks to Heino Andreas, Shahul Hameed, Heng Wang, Laure Belnoue, Tiago Pinheiro, Ivanna Mayorenko, Jorge Perlado, Patricia Fernández, Joana Branco, Laura Domínguez, Sandra Bandín, Ruth Morona, and Nerea Moreno. This work was supported by a postdoctoral fellowship to A.J. from the Wenner-Gren-Foundation and by the Swedish Research Council to A.S.


  1. 1.
    Duprat AM, Gualandris L, Kan P, Pituello F, Saint-Jeannet JP, Boudannaoui S (1986) Archives d’anatomie microscopique et de morphologie expérimentale. Arch Anat Microsc Morphol Exp 75:211–227Google Scholar
  2. 2.
    Eagleson GW (1996) Developmental neurobiology of the anterior areas in amphibians: urodele perspectives. Int J Dev Biol 40:735–743Google Scholar
  3. 3.
    Nieuwkoop PD (1996) What are the key advantages and disadvantages of urodele species compared to anurans as a model system for experimental analysis of early development? Int J Dev Biol 40:617–619Google Scholar
  4. 4.
    Gualandris-Parisot L, Husson D, Foulquier F, Kan P, Davet J, Aimar C, Dournon C, Duprat AM (2001) Pleurodeles waltl, amphibian, Urodele, is a suitable biological model for embryological and physiological space experiments on a vertebrate. Adv Space Res 28:569–578CrossRefGoogle Scholar
  5. 5.
    Spemann H (1921) Die Erzeugung tierischer Chimären durch heteroplastische embryonale Transplantation zwischen Triton cristatus und taeniatus. Wilhelm Roux Arch Entwickl Mech Org 120:374–706Google Scholar
  6. 6.
    Spemann H, Mangold H (1924) Über Induktion von Embryonanlage durch implantation artfremder Organisatoren. Wilhelm Roux Arch Entwickl Mech Org 100:599–638Google Scholar
  7. 7.
    Holtfreter J (1933) Der Einfluss von Wirtsalter und verschiedenen Orgenbezirken auf die Differenzierung von angelagertem Gastrulaektoderm. Wilhelm Roux Arch Entwickl Mech Org 127:610–775Google Scholar
  8. 8.
    Duprat AM, Gualandris L, Rouge P (1982) Neural induction and the structure of the target cell surface. J Embryol Exp Morphol 70:171–187Google Scholar
  9. 9.
    Boucaut JC, Bernard B, Aubery M, Bourrillon R, Houillon C (1979) Concanavalin A binding to amphibian embryo and effect on morphogenesis. J Embryol Exp Morphol 51:63–72Google Scholar
  10. 10.
    Nacu E, Knapp D, Tanaka EM, Epperlein HH (2009) Axolotl (Ambystoma mexicanum) embryonic transplantation methods. Cold Spring Harb Protoc 2009(8):pdb.prot5265. doi: 10.1101/pdb.prot5265 CrossRefGoogle Scholar
  11. 11.
    Ferretti P (1996) Re-examining jaw regeneration in urodeles: what have we learnt? Int J Dev Biol 40:807–811Google Scholar
  12. 12.
    Mitashov VI (1996) Mechanisms of retina regeneration in urodeles. Int J Dev Biol 40:833–844Google Scholar
  13. 13.
    Parish CL, Beljajeva A, Arenas E, Simon A (2007) Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model. Development 134:2881–2887CrossRefGoogle Scholar
  14. 14.
    Chernoff EA, Stocum DL, Nye HL, Cameron JA (2003) Urodele spinal cord regeneration and related processes. Dev Dyn 226:295–307CrossRefGoogle Scholar
  15. 15.
    Nacu E, Tanaka EM (2011) Limb regeneration: a new development? Annu Rev Cell Dev Biol 27:409–440CrossRefGoogle Scholar
  16. 16.
    Roth G, Dicke U, Nishikawa K (1992) How do ontogeny, morphology and physiology of sensory systems constrain and direct the evolution of amphibians? Am Nat 139:S105–S124CrossRefGoogle Scholar
  17. 17.
    Roth G, Nishikawa KC, Naujoks-Manteuffel C, Schmidt A, Wake DB (1993) Paedomorphosis and simplification in the nervous system of salamanders. Brain Behav Evol 42:137–170CrossRefGoogle Scholar
  18. 18.
    Gonzalez A, Smeets WJ (1991) Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. J Comp Neurol 303:457–477CrossRefGoogle Scholar
  19. 19.
    Gonzalez A, Marin O, Smeets WJ (1995) Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry. J Comp Neurol 360:33–48CrossRefGoogle Scholar
  20. 20.
    Moreno N, Lopez JM, Sanchez-Camacho C, Gonzalez A (2002) Development of NADPH-diaphorase/nitric oxide synthase in the brain of the urodele amphibian Pleurodeles waltl. J Chem Neuroanat 23:105–121CrossRefGoogle Scholar
  21. 21.
    Lopez JM, Moreno N, Gonzalez A (2003) Ontogeny of choline acetyltransferase (ChAT) immunoreactivity in the brain of the urodele amphibian Pleurodeles waltl. Brain Res Dev Brain Res 140:29–43CrossRefGoogle Scholar
  22. 22.
    Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310:1919–1923CrossRefGoogle Scholar
  23. 23.
    Voss SR, Epperlein HH, Tanaka EM (2009) Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc 2009(8):pdb.emo128. doi: 10.1101/pdb.emo128 CrossRefGoogle Scholar
  24. 24.
    Berg DA, Kirkham M, Beljajeva A, Knapp D, Habermann B, Ryge J, Tanaka EM, Simon A (2010) Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development 137:4127–4134CrossRefGoogle Scholar
  25. 25.
    Berg DA, Kirkham M, Wang H, Frisen J, Simon A (2011) Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons. Cell Stem Cell 8:426–433CrossRefGoogle Scholar
  26. 26.
    Joven A, Morona R, Moreno N, González A (2013) Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development. Brain Struct Funct 218:969–1003. doi: 10.1007/s00429-012-0442-1 CrossRefGoogle Scholar
  27. 27.
    Joven A, Morona R, González A, Moreno N (2013) Spatiotemporal patterns of Pax3, Pax6 and Pax7 expression in the developing brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol 521:40. doi: 10.1002/cne.23385 CrossRefGoogle Scholar
  28. 28.
    Maden M, Manwell LA, Ormerod BK (2013) Proliferation zones in the axolotl brain and regeneration of the telencephalon. Neural Dev 8:1. doi: 10.1186/1749-8104-8-1 CrossRefGoogle Scholar
  29. 29.
    Sandoval-Guzmán T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14:13. doi: 10.1016/j.stem.2013.11.007 CrossRefGoogle Scholar
  30. 30.
    Kirkham M, Berg DA, Simon A (2011) Microglia activation during neuroregeneration in the adult vertebrate brain. Neurosci Lett 497:11–16CrossRefGoogle Scholar
  31. 31.
    Kirkham M, Hameed LS, Berg DA, Wang H, Simon A (2014) Progenitor cell dynamics in the newt telencephalon during homeostasis and neuronal regeneration. Stem Cell Reports 2:12. doi: 10.1016/j.stemcr.2014.01.018 CrossRefGoogle Scholar
  32. 32.
    García-Paris M (1985) Los anfibios de España. Neografis, S.L., MadridGoogle Scholar
  33. 33.
    Barbadillo-Escriva LJ (1987) La guía de Incafo de los anfibios y reptiles de la península ibérica, baleares y canarias. Incafo, S.A., MadridGoogle Scholar
  34. 34.
    Díaz-Paniagua C, Gómez C, Portheault A, DeVries W (2005) Los anfibios de Doñana. Organismo Autónomo de Parques Nacionales, Ministerio de Medio Ambiente, MadridGoogle Scholar
  35. 35.
    Salvador A (2014) Gallipato—Pleurodeles waltl. Museo Nacional de Ciencias Naturales.
  36. 36.
    Hódar JA, Ruiz I, Camacho I (1993) Régimen alimenticio estival del gallipato Pleurodeles waltl (Michaheles, 1830) en una localidad del sureste peninsular. Rev Esp Herpetol 7:5Google Scholar
  37. 37.
    Martínez-del-Marmol G, Jiménez-Robles O (2013) Pleurodeles waltl Michahelles, 1830 in Morocco and Western Sahara.
  38. 38.
    Griffiths R (1995) Newts and salamanders of Europe. T & AD Poyser natural history, LondonGoogle Scholar
  39. 39.
    Schleich HH, Kästle W, Kabisch K (1996) Amphibians and reptiles of North Africa. Koeltz Sci. Books, KoenigsteinGoogle Scholar
  40. 40.
    Glaesner L (1925) Normentafel zur Entwicklung des gemeinen Wassermolchs (Molge vulgaris). Normentafeln zur Entwicklungsgeschichte der WirbeltiereGoogle Scholar
  41. 41.
    Gallien L, Durocher M (1957) Table chronologique de développment chez Pleurodeles waltlii Michahelles. Bull Biol 2:1–19Google Scholar
  42. 42.
    Armstrong JB, Malacinski GM (1989) Developmental biology of the axolotl. Oxford University Press, New YorkGoogle Scholar
  43. 43.
    Bordzilovskaya NP, Dettlaff TA, Duhon ST, Malacinski GM (1989) Developmental-stage series of axolotl embryos. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 201–219Google Scholar
  44. 44.
    Khan PA, Liversage RA (1995) Development of Notophthalmus viridescens embryos. Dev Growth Differ 37:529–537CrossRefGoogle Scholar
  45. 45.
    Shi DL, Boucaut JL (1995) The chronological development of the urodele amphibian Pleurodeles waltl (Michah). Int J Dev Biol 39:427–441Google Scholar
  46. 46.
    Nye HL, Cameron JA, Chernoff EA, Stocum DL (2003) Extending the table of stages of normal development of the axolotl: limb development. Dev Dyn 226:555–560CrossRefGoogle Scholar
  47. 47.
    Wong CJ, Liversage RA (2005) Limb developmental stages of the newt Notophthalmus viridescens. Int J Dev Biol 49:375–389CrossRefGoogle Scholar
  48. 48.
    Roberts A, Soffe SR, Clarke JD, Dale N (1983) Initiation and control of swimming in amphibian embryos. Symp Soc Exp Biol 37:261–284Google Scholar
  49. 49.
    Coghill GE (1929) Anatomy and the problem of behaviour. Cambridge University Press, LondonGoogle Scholar
  50. 50.
    Soffe SR, Clarke JDW, Roberts A (1983) Swimming and other centrally generated motor patterns in newt embryos. J Comp Physiol 152:535–544CrossRefGoogle Scholar
  51. 51.
    Bekoff A (1985) Development of locomotion in vertebrates, a comparative perspective. In: Gollin ES (ed) The comparative development of adaptive skills: evolutionary implications. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 57–94Google Scholar
  52. 52.
    Diesener G, Reichholf J (1986) Lurche und Kriechtiere (Reptiles y anfibios). Mosaik Verlag GmbH, MünchenGoogle Scholar
  53. 53.
    Nöllert A, Nöllert C (1992) Die Amphibien Europas. Bestimmung-Gefährdung-Schutz (Los anfibios de Europa. Identificación-Amenazas-Protección). Franckh-Kosmos Verlags-GmbH, SttutgartGoogle Scholar
  54. 54.
    Salvador A, García-París M (2001) Anfibios españoles. Identificación, historia natural y distribución. Canseco editores, S.L., Talavera de la ReinaGoogle Scholar
  55. 55.
    Hayashi T, Yokotani N, Tane S, Matsumoto A, Myouga A, Okamoto M, Takeuchi T (2013) Molecular genetic system for regenerative studies using newts. Dev Growth Differ 55:229–236CrossRefGoogle Scholar
  56. 56.
    Khattak S, Murawala P, Andreas H, Kappert V, Schuez M, Sandoval-Guzmán T, Crawford K, Tanaka EM (2014) Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat Protoc 9:529–540CrossRefGoogle Scholar
  57. 57.
    Deban SM, O’Reilly JC, Nishikawa KC (2001) The motor control of feeding in amphibians. Am Zool 41:18CrossRefGoogle Scholar
  58. 58.
    Macke J (2007) Caudata Illness Part 3: Illness Photographs.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Cell and Molecular BiologyKarolinska InstituteStockholmSweden

Personalised recommendations