Housing and Maintenance of Ambystoma mexicanum, the Mexican Axolotl

  • Johanna E. Farkas
  • James R. Monaghan
Part of the Methods in Molecular Biology book series (MIMB, volume 1290)


The aim of this paper is to assemble a significant amount of information on Ambystoma mexicanum, the axolotl salamander, to assist in the basic knowledge needed to raise, breed, and study most aspects of axolotl biology. It is important to understand the basic biology of the axolotl in order to make informed decisions on their proper care and use in experiments. Therefore, we will provide necessary information to the non-herpetologist that will assist in their study of this unique and fascinating animal. We also aim to provide a resource on the general anatomy, behavior, and experimental tips specific to the Mexican axolotl that will be of use to most axolotl laboratories. Axolotls have been actively researched since the 1860s, giving testament to their relatively straightforward maintenance and their versatility as an animal model for development and regeneration. Interest in using the axolotl in laboratory research has grown tremendously over the past decade, so dedicated resources to support the study of this species are needed and encouraged.

Key words

Salamander Limb regeneration Animal model Axolotl anatomy 



We would like to thank the Ambystoma Genetic Stock Center for the continued support and advice on axolotl maintenance (R24 OD010435). We would also like to thank Panagiotis Katsaros and William Fowle for the electron microscopy images, Matthew Nguyen and Pankhuri Singhal for the histological staining, and Alex Sweeney and Jason Langshaw for the careful reading of the manuscript.


  1. 1.
    Shaffer HB (1989) Natural history, ecology, and evolution of the Mexican “Axolotls”. Axolotl Newslett 18:5–11Google Scholar
  2. 2.
    Contreras V, Martínez-Meyer E, Valiente E, Zambrano L (2009) Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biol Conserv 142:2881–2885CrossRefGoogle Scholar
  3. 3.
    Smith HM (1969) The Mexican axolotl: some misconceptions and problems. Bioscience 19:593–615CrossRefGoogle Scholar
  4. 4.
    Zambrano L, Reidl PM, McKay J, Griffiths R, Shaffer HB, Flores-Villela O, Parra-Olea G, Wake DB (2010) Ambystoma mexicanum. IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2Google Scholar
  5. 5.
    Press A (2014) Axolotl, Endangered ‘Water Monster,’ Sighted In Mexico after fears of disappearance. 02/24/2014Google Scholar
  6. 6.
    Smith H (1989) Discovery of the axolotl and its history in research. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, NY, pp 3–12Google Scholar
  7. 7.
    Malacinski GM (1978) The Mexican axolotl, Ambystoma mexicanum: its biology and developmental genetics, and its autonomous cell-lethal genes. Am Zool 18:195–206Google Scholar
  8. 8.
    Humphrey RR (1967) Albino axolotls from an albino tiger salamander through hybridization. J Hered 58:95–101Google Scholar
  9. 9.
    Voss SR, Smith JJ (2005) Evolution of salamander life cycles: a major-effect quantitative trait locus contributes to discrete and continuous variation for metamorphic timing. Genetics 170:275–281CrossRefGoogle Scholar
  10. 10.
    Humphrey RR (1979) The axolotl colony at Indiana University. Axolotl Newslett 1:3–8Google Scholar
  11. 11.
    Voss SR, Epperlein HH, Tanaka EM (2009) Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc 2009:pdb.emo128. doi: 10.1101/pdb.emo128 CrossRefGoogle Scholar
  12. 12.
    Monaghan JR et al (2014) Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity. Regeneration 1:2–14CrossRefGoogle Scholar
  13. 13.
    R: A language and environment for statistical computingGoogle Scholar
  14. 14.
    Zhang P, Wake DB (2009) Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 53:492–508CrossRefGoogle Scholar
  15. 15.
    Sandoval-Guzman T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14:174–187CrossRefGoogle Scholar
  16. 16.
    Blassberg RA, Garza-Garcia A, Janmohamed A, Gates PB, Brockes JP (2011) Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration. J Cell Sci 124:47–56CrossRefGoogle Scholar
  17. 17.
    Kumar A, Nevill G, Brockes JP, Forge A (2010) A comparative study of gland cells implicated in the nerve dependence of salamander limb regeneration. J Anat 217:16–25CrossRefGoogle Scholar
  18. 18.
    Liversage RA, McLaughlin DS (1983) Effects of delayed amputation on denervated forelimbs of adult newt. J Embryol Exp Morphol 75:1–10Google Scholar
  19. 19.
    Page RB, Voss SR (2009) Induction of metamorphosis in axolotls (Ambystoma mexicanum). Cold Spring Harb Protoc 2009(8):pdb.prot5268. doi: 10.1101/pdb.prot5268 CrossRefGoogle Scholar
  20. 20.
    Voss SR, Shaffer HB (1996) What insights into the developmental traits of urodeles does the study of interspecific hybrids provide? Int J Dev Biol 40:885–893Google Scholar
  21. 21.
    Francis ETB (1934) The anatomy of the salamander. The Clarendon Press, Oxford, With an historical introduction by Professor Cole FJGoogle Scholar
  22. 22.
    Getchell TV (1977) Analysis of intracellular recordings from salamander olfactory epithelium. Brain Res 123:275–286CrossRefGoogle Scholar
  23. 23.
    Mackay-Sim A, Shaman P (1984) Topographic coding of odorant quality is maintained at different concentrations in the salamander olfactory epithelium. Brain Res 297:207–216CrossRefGoogle Scholar
  24. 24.
    Mackay-Sim A, Shaman P, Moulton DG (1982) Topographic coding of olfactory quality: odorant-specific patterns of epithelial responsivity in the salamander. J Neurophysiol 48:584–596Google Scholar
  25. 25.
    Lee J, Gardiner DM (2012) Regeneration of limb joints in the axolotl (Ambystoma mexicanum). PLoS One 7:e50615. doi: 10.1371/journal.pone.0050615 CrossRefGoogle Scholar
  26. 26.
    Cosden RS, Lattermann C, Romine S, Gao J, Voss SR, MacLeod JN (2011) Intrinsic repair of full-thickness articular cartilage defects in the axolotl salamander. Osteoarthritis Cartilage 19:200–205CrossRefGoogle Scholar
  27. 27.
    Grabowski SR, Pak WL (1975) Intracellular recordings of rod responses during dark-adaptation. J Physiol 247:363–391CrossRefGoogle Scholar
  28. 28.
    Waloga G, Pak WL (1978) Ionic mechanism for the generation of horizontal cell potentials in isolated axolotl retina. J Gen Physiol 71:69–92CrossRefGoogle Scholar
  29. 29.
    Dvorak D (1984) Off-pathway synaptic transmission in the outer retina of the axolotl is mediated by a kainic acid-preferring receptor. Neurosci Lett 50:7–11CrossRefGoogle Scholar
  30. 30.
    Makino CL, Dodd RL (1996) Multiple visual pigments in a photoreceptor of the salamander retina. J Gen Physiol 108:27–34CrossRefGoogle Scholar
  31. 31.
    Isayama T, Chen Y, Kono M, Fabre E, Slavsky M, DeGrip WJ, Ma JX, Crouch RK, Makino CL (2014) Coexpression of three opsins in cone photoreceptors of the salamander Ambystoma tigrinum. J Comp Neurol 522:2249–2265CrossRefGoogle Scholar
  32. 32.
    Smith SC (1996) Pattern formation in the urodele mechanoreceptive lateral line: what features can be exploited for the study of development and evolution? Int J Dev Biol 40:727–733Google Scholar
  33. 33.
    Straus NA (1971) Comparative DNA renaturation kinetics in amphibians. Proc Natl Acad Sci U S A 68:799–802CrossRefGoogle Scholar
  34. 34.
    Putnam JL, Parkerson JB Jr (1985) Anatomy of the heart of the amphibia II. Cryptobranchus alleganiensis. Herpetologica 41:287–298Google Scholar
  35. 35.
    Lopez D, Lin L, Monaghan JR, Cogle CR, Bova FJ, Maden M, Scott EW (2014) Mapping hematopoiesis in a fully regenerative vertebrate: the axolotl. Blood 124:1232. doi: 10.1182/blood-2013-09-526970 CrossRefGoogle Scholar
  36. 36.
    Erginel-Unaltuna N, Dube DK, Robertson DR, Lemanski LF (1995) In vivo protein synthesis in developing hearts of normal and cardiac mutant axolotls (Ambystoma mexicanum). Cell Mol Biol Res 41:181–187Google Scholar
  37. 37.
    Lemanski SF, Kovacs CP, Lemanski LF (1997) Analysis of the three-dimensional distributions of alpha-actinin, ankyrin, and filamin in developing hearts of normal and cardiac mutant axolotls (Ambystoma mexicanum). Anat Embryol (Berl) 195:155–163CrossRefGoogle Scholar
  38. 38.
    Whitford WG, Sherman RE (1968) Aerial and aquatic respiration in axolotl and transformed Ambystoma tigrinum. Herpetologica 24:233–237Google Scholar
  39. 39.
    Brainerd EL (1998) Mechanics of lung ventilation in a larval salamander Ambystoma tigrinum. J Exp Biol 201:2891–2901Google Scholar
  40. 40.
    McKenzie DJ, Taylor EW (1996) Cardioventilatory responses to hypoxia and NaCN in the neotenous axolotl. Respir Physiol 106:255–262CrossRefGoogle Scholar
  41. 41.
    Ching YC, Wedgwood RJ (1967) Immunologic responses in the axolotl, Siredon mexicanum. J Immunol 99:191–200Google Scholar
  42. 42.
    Charlemagne J (1979) Thymus independent anti-horse erythrocyte antibody response and suppressor T cells in the Mexican axolotl (Amphibia, Urodela, ambystoma mexicanum). Immunology 36:643–648Google Scholar
  43. 43.
    Sessions SK, Gardiner DM, Bryant SV (1989) Compatible limb patterning mechanisms in urodeles and anurans. Dev Biol 131:294–301CrossRefGoogle Scholar
  44. 44.
    Harris WA, Cole J (1984) Common mechanisms in vertebrate axonal navigation: retinal transplants between distantly related amphibia. J Neurogenet 1:127–140CrossRefGoogle Scholar
  45. 45.
    Sobkow L, Epperlein HH, Herklotz S, Straube WL, Tanaka EM (2006) A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev Biol 290:386–397CrossRefGoogle Scholar
  46. 46.
    Froese JM, Smits JE, Wickstrom ML (2005) Evaluation of two methods for measuring nonspecific immunity in tiger salamanders (Ambystoma tigrinum). J Wildl Dis 41:209–217CrossRefGoogle Scholar
  47. 47.
    Chinchar VG, Hyatt A, Miyazaki T, Williams T (2009) Family Iridoviridae: poor viral relations no longer. Curr Top Microbiol Immunol 328:123–170Google Scholar
  48. 48.
    Cotter JD, Storfer A, Page RB, Beachy CK, Voss SR (2008) Transcriptional response of Mexican axolotls to Ambystoma tigrinum virus (ATV) infection. BMC Genomics 9:493CrossRefGoogle Scholar
  49. 49.
    Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 110:9415–9420CrossRefGoogle Scholar
  50. 50.
    Tsonis PA, Eguchi G (1981) Carcinogens on regeneration. Effects of N-methyl-N′-nitro-N-nitrosoguanidine and 4-nitroquinoline-1-oxide on limb regeneration in adult newts. Differentiation 20:52–60CrossRefGoogle Scholar
  51. 51.
    Zilakos NP, Zafiratos CS, Parchment RE (1996) Stage-dependent genetically-based deformities of the regenerating newt limb from 4-nitroquinoline-N-oxide mutagenesis: potential embryonic regulation of cancer. Differentiation 60:67–74CrossRefGoogle Scholar
  52. 52.
    Shioda C, Uchida K, Nakayama H (2011) Pathological features of olfactory neuroblastoma in an axolotl (Ambystoma mexicanum). J Vet Med Sci 73:1109–1111CrossRefGoogle Scholar
  53. 53.
    Harshbarger JC, Chang SC, DeLanney LE, Rose FL, Green DE (1999) Cutaneous mastocytomas in the neotenic caudate amphibians Ambystoma mexicanum (axolotl) and Ambystoma tigrinum (tiger salamander). J Cancer Res Clin Oncol 125:187–192CrossRefGoogle Scholar
  54. 54.
    Frost SK, Epp LG, Robinson SJ (1984) The pigmentary system of developing axolotls. I. A biochemical and structural analysis of chromatophores in wild-type axolotls. J Embryol Exp Morphol 81:105–125Google Scholar
  55. 55.
    Gresens J (2004) An introduction to the Mexican axolotl (Ambystoma mexicanum). Lab Anim 33:41–47CrossRefGoogle Scholar
  56. 56.
    Keller RE, Lofberg J, Spieth J (1982) Neural crest cell behavior in white and dark embryos of Ambystoma mexicanum: epidermal inhibition of pigment cell migration in the white axolotl. Dev Biol 89:179–195CrossRefGoogle Scholar
  57. 57.
    Seifert AW, Monaghan JR, Voss SR, Maden M (2012) Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS One 7:e32875. doi: 10.1371/journal.pone.0032875 CrossRefGoogle Scholar
  58. 58.
    Jarial MS (1989) Fine structure of the epidermal Leydig cells in the axolotl Ambystoma mexicanum in relation to their function. J Anat 167:95–102Google Scholar
  59. 59.
    Simon A, Tanaka EM (2013) Limb regeneration. Wiley Interdiscip Rev Dev Biol 2:291–300CrossRefGoogle Scholar
  60. 60.
    Harris WA (1989) Neurobiology. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, NY, pp 157–168Google Scholar
  61. 61.
    Stirling RV, Brandle K (1982) Expansion of the visual projection to the tectum of axolotls during metamorphosis. Brain Res 281:343–345CrossRefGoogle Scholar
  62. 62.
    Dorries KM, White J, Kauer JS (1997) Rapid classical conditioning of odor response in a physiological model for olfactory research, the tiger salamander. Chem Senses 22:277–286CrossRefGoogle Scholar
  63. 63.
    Schwartz JM, Cogan DC (1977) Position discrimination in the salamander, Ambystoma tigrinum. Dev Psychobiol 10:355–358CrossRefGoogle Scholar
  64. 64.
    Kirsche K, Kirsche W (1964) Regenerative processes in the telencephalon of Ambystoma Mexicanum. J Hirnforsch 7:421–436Google Scholar
  65. 65.
    Richter W (1968) Regenerative processes following removal of the caudal sector of the telencephalon including the telencephalo-diencephalic border region in Ambystoma mexicanum. J Hirnforsch 10:515–534Google Scholar
  66. 66.
    Maden M, Manwell LA, Ormerod BK (2013) Proliferation zones in the axolotl brain and regeneration of the telencephalon. Neural Dev 8:1. doi: 10.1186/1749-8104-8-1 CrossRefGoogle Scholar
  67. 67.
    Parish CL, Beljajeva A, Arenas E, Simon A (2007) Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model. Development 134:2881–2887CrossRefGoogle Scholar
  68. 68.
    Okamoto M, Ohsawa H, Hayashi T, Owaribe K, Tsonis PA (2007) Regeneration of retinotectal projections after optic tectum removal in adult newts. Mol Vis 13:2112–2118Google Scholar
  69. 69.
    Wakimoto BT (1979) DNA synthesis after polyspermic fertilization in the axolotl. J Embryol Exp Morphol 52:39–48Google Scholar
  70. 70.
    Armstrong JB (1989) Spermatogenesis. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, NYGoogle Scholar
  71. 71.
    Armstrong JB, Duhan ST (1989) Induced spawnings, artificial insemination and other genetic manipulations. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, NY, pp 229–235Google Scholar
  72. 72.
    Johnson AD, Crother B, White ME, Patient R, Bachvarova RF, Drum M, Masi T (2003) Regulative germ cell specification in axolotl embryos: a primitive trait conserved in the mammalian lineage. Philos Trans R Soc Lond B Biol Sci 358:1371–1379CrossRefGoogle Scholar
  73. 73.
    Beetschen J-C (1989) Oogenesis. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, NYGoogle Scholar
  74. 74.
    Borland S (2000) Practical Axolotl. Axolotl Newslett 28:17–22Google Scholar
  75. 75.
    Duhon ST (1989) Disease in axolotls. In: Armstrong JB, Malacinski GB (eds) Developmental biology of the axolotl. Oxford University Press, New York, NY, pp 264–269Google Scholar
  76. 76.
    Khattak S, Murawala P, Andreas H, Kappert V, Schuez M, Sandoval-Guzman T, Crawford K, Tanaka EM (2014) Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat Protoc 9:529–540CrossRefGoogle Scholar
  77. 77.
    Clare JP (2012) Axolotls.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiologyNortheastern UniversityBostonUSA

Personalised recommendations