Generating and Identifying Axolotls with Targeted Mutations Using Cas9 RNA-Guided Nuclease

  • G. Parker Flowers
  • Craig M. Crews
Part of the Methods in Molecular Biology book series (MIMB, volume 1290)


The CRISPR/Cas9 RNA-guided nuclease now enables a reverse genetics approach to investigate the function of genes of interest during regeneration in the axolotl. The process of generating the constructs necessary for targeting a gene of interest is considerably less labor intensive than for other methods of targeted mutagenesis such as Zinc finger nucleases or Transcription activator-like effector nucleases. Here, we describe the identification of targetable sequences in the gene of interest, the construction of unique guide RNAs, the microinjection of these RNAs with Cas9-encoding mRNA, the selection of well-injected animals, and an inexpensive, PCR-based method for identifying highly mutagenized animals.

Key words

Transgenesis Salamander CRISPR Limb regeneration Guide RNA 


  1. 1.
    Malacinski GM (1989) Developmental Genetics. In: Malacinski GM, Armstrong JB (eds) Dev. Biol. Axolotl. Oxford University Press, New York, NY, pp 103–109Google Scholar
  2. 2.
    Voss SR, Epperlein HH, Tanaka EM (2009) Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc 2009:pdb.emo128. doi: 10.1101/pdb.emo128
  3. 3.
    Monaghan JR, Athippozhy A, Seifert AW, Putta S, Stromberg AJ, Maden M, Gardiner DM, Voss SR (2012) Gene expression patterns specific to the regenerating limb of the Mexican axolotl. Biol Open 1:937–948. doi: 10.1242/bio.20121594 CrossRefGoogle Scholar
  4. 4.
    Campbell LJ, Suárez-Castillo EC, Ortiz-Zuazaga H, Knapp D, Tanaka EM, Crews CM (2011) Gene expression profile of the regeneration epithelium during axolotl limb regeneration. Dev Dyn 240:1826–1840CrossRefGoogle Scholar
  5. 5.
    Knapp D, Schulz H, Rascon CA, Volkmer M, Scholz J, Nacu E, Le M, Novozhilov S, Tazaki A, Protze S, Jacob T, Hubner N, Habermann B, Tanaka EM (2013) Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program. PLoS One 8:e61352. doi: 10.1371/journal.pone.0061352 CrossRefGoogle Scholar
  6. 6.
    Holman EC, Campbell LJ, Hines J, Crews CM (2012) Microarray analysis of microRNA expression during axolotl limb regeneration. PLoS One 7:e41804. doi: 10.1371/journal.pone.0041804 CrossRefGoogle Scholar
  7. 7.
    Stewart R, Rascón CA, Tian S, Nie J, Barry C, Chu L-F, Ardalani H, Wagner RJ, Probasco MD, Bolin JM, Leng N, Sengupta S, Volkmer M, Habermann B, Tanaka EM, Thomson JA, Dewey CN (2013) Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema. PLoS Comput Biol 9:e1002936. doi: 10.1371/journal.pcbi.1002936 CrossRefGoogle Scholar
  8. 8.
    Wu C-H, Tsai M-H, Ho C-C, Chen C-Y, Lee H-S (2013) De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration. BMC Genomics 14:434. doi: 10.1186/1471-2164-14-434 CrossRefGoogle Scholar
  9. 9.
    Monaghan JR, Epp LG, Putta S, Page RB, Walker JA, Beachy CK, Zhu W, Pao GM, Verma IM, Hunter T, Bryant SV, Gardiner DM, Harkins TT, Voss SR (2009) Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration. BMC Biol 7:1. doi: 10.1186/1741-7007-7-1 CrossRefGoogle Scholar
  10. 10.
    Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973CrossRefGoogle Scholar
  11. 11.
    Wood AJ, Lo T-W, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307CrossRefGoogle Scholar
  12. 12.
    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh J-RJ, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229CrossRefGoogle Scholar
  13. 13.
    Flowers GP, Timberlake AT, McLean KC, Monaghan JR, Crews CM (2014) Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development 141:2165–2171CrossRefGoogle Scholar
  14. 14.
    Smith JJ, Putta S, Walker JA, Kump DK, Samuels AK, Monaghan JR, Weisrock DW, Staben C, Voss SR (2005) Sal-Site: Integrating new and existing ambystomatid salamander research and informational resources. BMC Genomics 6:181. doi: 10.1186/1471-2164-6-181 CrossRefGoogle Scholar
  15. 15.
    Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284CrossRefGoogle Scholar
  16. 16.
    Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, Joung JK, Peterson RT, Yeh J-RJ (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8:e68708. doi: 10.1371/journal.pone.0068708 CrossRefGoogle Scholar
  17. 17.
    Smith JJ, Putta S, Zhu W, Pao GM, Verma IM, Hunter T, Bryant SV, Gardiner DM, Harkins TT, Voss SR (2009) Genic regions of a large salamander genome contain long introns and novel genes. BMC Genomics 10:19. doi: 10.1186/1471-2164-10-19 CrossRefGoogle Scholar
  18. 18.
    Khattak S, Murawala P, Andreas H, Kappert V, Schuez M, Sandoval-Guzmán T, Crawford K, Tanaka EM (2014) Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat Protoc 9:529–540CrossRefGoogle Scholar
  19. 19.
    Humphrey RR, Fankhauser G (1957) The origin of spontaneous and experimental haploids in the Mexican axolotl (Siredon—or Ambystoma—Mexicanum). J Exp Zool 134:427–447CrossRefGoogle Scholar
  20. 20.
    Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141:707–714CrossRefGoogle Scholar
  21. 21.
    Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUSA

Personalised recommendations