Advertisement

Variation in Salamanders: An Essay on Genomes, Development, and Evolution

  • Jeremy P. Brockes
Part of the Methods in Molecular Biology book series (MIMB, volume 1290)

Abstract

Regeneration is studied in a few model species of salamanders, but the ten families of salamanders show considerable variation, and this has implications for our understanding of salamander biology. The most recent classification of the families identifies the cryptobranchoidea as the basal group which diverged in the early Jurassic. Variation in the sizes of genomes is particularly obvious, and reflects a major contribution from transposable elements which is already present in the basal group.Limb development has been a focus for evodevo studies, in part because of the variable property of pre-axial dominance which distinguishes salamanders from other tetrapods. This is thought to reflect the selective pressures that operate on a free-living aquatic larva, and might also be relevant for the evolution of limb regeneration. Recent fossil evidence suggests that both pre-axial dominance and limb regeneration were present 300 million years ago in larval temnospondyl amphibians that lived in mountain lakes. A satisfying account of regeneration in salamanders may need to address all these different aspects in the future.

Key words

Newt Axolotl Limb regeneration 

Notes

Acknowledgments

I thank Peng Zhang for his help in relation to salamander phylogeny and Anoop Kumar for help with the figures.

References

  1. 1.
    Sandoval-Guzman T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14:174–187CrossRefGoogle Scholar
  2. 2.
    Larson A, Dimmick WW (1993) Phylogenetic relationships of the salamander families: an analysis of congruence among morphological and molecular characters. Herpetol Monogr 7:77–93CrossRefGoogle Scholar
  3. 3.
    Duellman WE, Trueb L (1994) Biology of amphibians. Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  4. 4.
    Shen XX, Liang D, Feng YJ, Chen MY, Zhang P (2013) A versatile and highly efficient toolkit including 102 nuclear markers for vertebrate phylogenomics, tested by resolving the higher level relationships of the caudata. Mol Biol Evol 30:2235–2248CrossRefGoogle Scholar
  5. 5.
    Carroll R (2009) The rise of amphibians. The Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  6. 6.
    Wake DB, Marks SB (1993) Development and evolution of Plethodontid salamanders: a review of prior studies and a prospectus for future research. Herpetologica 49:194–203Google Scholar
  7. 7.
    Wake DB, Hanken J (1996) Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis? Int J Dev Biol 40:859–869Google Scholar
  8. 8.
    Sun C, Shepard DB, Chong RA, Lopez Arriaza J, Hall K, Castoe TA, Feschotte C, Pollock DD, Mueller RL (2012) LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol Evol 4:168–183CrossRefGoogle Scholar
  9. 9.
    Olmo E, Morescalchi A (1979) Evolution of the genome and cell sizes in salamanders. Experientia 31:804–806CrossRefGoogle Scholar
  10. 10.
    Sessions SK (2008) Evolutionary cytogenetics in salamanders. Chromosome Res 16:183–201CrossRefGoogle Scholar
  11. 11.
    Miller OLJ, Beatty BR (1969) Visualization of nucleolar genes. Science 164:955–957CrossRefGoogle Scholar
  12. 12.
    Kaufmann R, Cremer C, Gall JG (2012) Superresolution imaging of transcription units on newt lampbrush chromosomes. Chromosome Res 20:1009–1015CrossRefGoogle Scholar
  13. 13.
    Hayden JH, Bowser SS, Rieder CL (1990) Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J Cell Biol 111:1039–1045CrossRefGoogle Scholar
  14. 14.
    Litvinchuk SN, Rosanov JM, Borkin LJ (2007) Correlations of geographic distribution and temperature of embryonic development with the nuclear DNA content in the Salamandridae (Urodela, Amphibia). Genome 50:333–342CrossRefGoogle Scholar
  15. 15.
    Sessions SK, Larson A (1987) Developmental correlates of genome size in Plethodontid salamanders and their implications for genome evolution. Evolution 41:1239–1251CrossRefGoogle Scholar
  16. 16.
    Roth G, Nishikawa KC, Wake DB (1997) Genome size, secondary simplification, and the evolution of the brain in salamanders. Brain Behav Evolut 50:50–59CrossRefGoogle Scholar
  17. 17.
    Mueller RL, Gregory TR, Gregory SM, Hsieh A, Boore JL (2008) Genome size, cell size, and the evolution of enucleated erythrocytes in attenuate salamanders. Zoology 111:218–230CrossRefGoogle Scholar
  18. 18.
    Sun C, Mueller RL (2014) Hellbender genome sequences shed light on genomic expansion at the base of crown salamanders. Genome Biol Evol 6:1818–1829CrossRefGoogle Scholar
  19. 19.
    Zhu W, Kuo D, Nathanson J, Satoh A, Pao GM, Yeo GW, Bryant SV, Voss SR, Gardiner DM, Hunter T (2012) Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration. Dev Growth Differ 54:673–685CrossRefGoogle Scholar
  20. 20.
    Eguchi G, Eguchi Y, Nakamura K, Yadav MC, Millan JL, Tsonis PA (2011) Regenerative capacity in newts is not altered by repeated regeneration and ageing. Nat Commun 2:384. doi: 10.1038/ncomms1389 CrossRefGoogle Scholar
  21. 21.
    Looso M, Preussner J, Sousounis K, Bruckskotten M, Michel CS, Lignelli E, Reinhardt R, Hoffner S, Kruger M, Tsonis PA, Borchardt T, Braun T (2013) A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration. Genome Biol 14(2):R16. doi: 10.1186/gb-2013-14-2-r16 CrossRefGoogle Scholar
  22. 22.
    Stewart R, Rascon CA, Tian S, Nie J, Barry C, Chu LF, Ardalani H, Wagner RJ, Probasco MD, Bolin JM, Leng N, Sengupta S, Volkmer M, Habermann B, Tanaka EM, Thomson JA, Dewey CN (2013) Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema. PLoS Comput Biol 9(3):e1002936. doi: 10.1371/journal.pcbi.1002936 CrossRefGoogle Scholar
  23. 23.
    Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth A, Singer O, Trono D, Pfaff SL (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:57–63Google Scholar
  24. 24.
    Macia A, Blanco-Jimenez E, Garcia-Perez JL (2014) Retrotransposons in pluripotent cells: impact and new roles in cellular plasticity. Biochim Biophys Acta doi:  10.1016/j.bbagrm.2014.07.007
  25. 25.
    Muotri AR, Marchetto MC, Coufal NG, Gage FH (2007) The necessary junk: new functions for transposable elements. Hum Mol Genet 16:R159–R167CrossRefGoogle Scholar
  26. 26.
    Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, Chicago, ILCrossRefGoogle Scholar
  27. 27.
    Frobisch NB, Shubin NH (2011) Salamander limb development: integrating genes, morphology, and fossils. Dev Dyn 240:1087–1099CrossRefGoogle Scholar
  28. 28.
    Holmgren N (1933) On the origin of the tetrapod limb. Acta Zool 14:187–248CrossRefGoogle Scholar
  29. 29.
    Torok MA, Gardiner DM, Shubin NH, Bryant SV (1998) Expression of HoxD genes in developing and regenerating axolotl limbs. Dev Biol 200:225–233CrossRefGoogle Scholar
  30. 30.
    Vorobyeva EI, Hinchliffe JR (1996) Developmental pattern and morphology of Salamandrella keyserlingii limbs (Amphibia, Hynobiidae) including some evolutionary aspects. Russ J Herpetol 3:68–81Google Scholar
  31. 31.
    Wake DB, Shubin NH (1998) Limb development in the Pacific giant salamanders, Dicamptodon (Amphibia, Caudata, Dicamptodontidae). Can J Zool 76:2058–2066CrossRefGoogle Scholar
  32. 32.
    Franssen RA, Marks S, Wake D, Shubin N (2005) Limb chondrogenesis of the seepage salamander, Desmognathus aeneus (amphibia: plethodontidae). J Morphol 265:87–101CrossRefGoogle Scholar
  33. 33.
    Shubin NH, Wake DB (2003) Morphological variation, development, and evolution of the limb skeleton of salamanders. In: Heatwole H, Davies M (eds) Amphibian biology, vol 5. Surrey Beatty and Sons, Chipping Norton, NSW, pp 1782–1808Google Scholar
  34. 34.
    Semlitsch RD, Reichling SB (1989) Density-dependent injury in larval salamanders. Oecologia 81:100–103CrossRefGoogle Scholar
  35. 35.
    Wildy EL, Chivers DP, Kiesecker JM, Blaustein AR (2001) The effects of food level and conspecific density on biting and cannibalism in larval long-toed salamanders, Ambystoma macrodactylum. Oecologia 128:202–209CrossRefGoogle Scholar
  36. 36.
    Shubin NH (2002) Origin of evolutionary novelty: examples from limbs. J Morphol 252:15–28CrossRefGoogle Scholar
  37. 37.
    de Bakker MA, Fowler DA, den Oude K, Dondorp EM, Navas MC, Horbanczuk JO, Sire JY, Szczerbinska D, Richardson MK (2013) Digit loss in archosaur evolution and the interplay between selection and constraints. Nature 500:445–448CrossRefGoogle Scholar
  38. 38.
    Raspopovic J, Marcon L, Russo L, Sharpe J (2014) Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345:566–570CrossRefGoogle Scholar
  39. 39.
    Carroll RL (2007) The palaeozoic ancestry of salamanders, frogs and caecilians. Zool J Linn Soc 150:1–140CrossRefGoogle Scholar
  40. 40.
    Gao K-Q, Shubin NH (2003) Earliest known crown-group salamanders. Nature 422:424–428CrossRefGoogle Scholar
  41. 41.
    Schoch RR (2014) Amphibian evolution: the life of early land vertebrates. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  42. 42.
    Hanken J (1986) Developmental evidence for amphibian origins. Evolut Biol 20:389–417Google Scholar
  43. 43.
    Frobisch NB, Carroll RL, Schoch RR (2007) Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development. Evol Dev 9:69–75CrossRefGoogle Scholar
  44. 44.
    Frobisch NB, Bickelmann C, Witzmann F (2014) Early evolution of limb regeneration in tetrapods: evidence from a 300-million-year-old amphibian. Proc R Soc B 281:20141550. doi: 10.1098/rspb.2014.1550 CrossRefGoogle Scholar
  45. 45.
    Anderson JS, Reisz RR, Scott D, Frobisch NB, Sumida SS (2008) A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature 453:515–518CrossRefGoogle Scholar
  46. 46.
    Ghosh S, Thorogood P, Ferretti P (1994) Regenerative capability of upper and lower jaws in the newt. Int J Dev Biol 38:479–490Google Scholar
  47. 47.
    Garza-Garcia AA, Driscoll PC, Brockes JP (2010) Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr Comp Biol 50:528–535CrossRefGoogle Scholar
  48. 48.
    Brockes JP, Gates PB (2014) Mechanisms underlying vertebrate limb regeneration: lessons from the salamander. Biochem Soc Trans 42:625–630CrossRefGoogle Scholar
  49. 49.
    Cuervo R, Hernandez-Martinez R, Chimal-Monroy J, Merchant-Larios H, Covarrubias L (2012) Full regeneration of the tribasal Polypterus fin. Proc Natl Acad Sci U S A 109:3838–3843CrossRefGoogle Scholar
  50. 50.
    Looso M, Michel CS, Konzer A, Bruckskotten M, Borchardt T, Kruger M, Braun T (2012) Spiked-in pulsed in vivo labeling identifies a new member of the CCN family in regenerating newt hearts. J Proteome Res 11:4693–4704CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK

Personalised recommendations