Skip to main content

Fragment-Based Design of Kinase Inhibitors: A Practical Guide

  • Protocol
  • First Online:
Book cover Fragment-Based Methods in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1289))

Abstract

Fragment-based drug design has become an important strategy for drug design and development over the last decade. It has been used with particular success in the development of kinase inhibitors, which are one of the most widely explored classes of drug targets today. The application of fragment-based methods to discovering and optimizing kinase inhibitors can be a complicated and daunting task; however, a general process has emerged that has been highly fruitful. Here a practical outline of the fragment process used in kinase inhibitor design and development is laid out with specific examples. A guide to the overall process from initial discovery through fragment screening, including the difficulties in detection, to the computational methods available for use in optimization of the discovered fragments is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fabbro D, Cowan-Jacob SW, Mobitz H, Martiny-Baron G (2012) Targeting cancer with small-molecular-weight kinase inhibitors. Methods Mol Biol 795:1–34

    Article  CAS  PubMed  Google Scholar 

  2. Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM (2013) AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochim Biophys Acta 1834:1302–1321

    Article  CAS  PubMed  Google Scholar 

  3. Cohen P, Alessi DR (2013) Kinase drug discovery – what’s next in the field? ACS Chem Biol 8:96–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(1912–1916):1933–1934

    Google Scholar 

  5. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Breitenlechner CB, Bossemeyer D, Engh RA (2005) Crystallography for protein kinase drug design: PKA and SRC case studies. Biochim Biophys Acta 1754:38–49

    Article  CAS  PubMed  Google Scholar 

  7. Chiu Y-Y, Lin C-T, Huang J-W, Hsu K-C, Tseng J-H, You S-R, Yang J-M (2013) KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms. Nucleic Acids Res 41:D430–D440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ghose AK, Herbertz T, Pippin DA, Salvino JM, Mallamo JP (2008) Knowledge based prediction of ligand binding modes and rational inhibitor design for kinase drug discovery. J Med Chem 51:5149–5171

    Article  CAS  PubMed  Google Scholar 

  9. Liao JJ-L (2007) Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J Med Chem 50:409–424

    Article  CAS  PubMed  Google Scholar 

  10. van Linden OP, Kooistra AJ, Leurs R, de Esch IJ, de Graaf C (2014) KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. J Med Chem 57(2):249–277

    Article  PubMed  Google Scholar 

  11. Vieth M, Sutherland JJ, Robertson DH, Campbell RM (2005) Kinomics: characterizing the therapeutically validated kinase space. Drug Discov Today 10:839–846

    Article  CAS  PubMed  Google Scholar 

  12. Bossemeyer D, Engh RA, Kinzel V, Ponstingl H, Huber R (1993) Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 Å structure of the complex with manganese(2+) adenylyl imidodiphosphate and inhibitor peptide PKI(5–24). EMBO J 12:849–859

    CAS  PubMed  Google Scholar 

  13. Wang Z, Canagarajah BJ, Boehm JC, Kassisa S, Cobb MH, Young PR, Abdel-Meguid S, Adams JL, Goldsmith EJ (1998) Structural basis of inhibitor selectivity in MAP kinases. Structure (London) 6:1117–1128

    Article  CAS  Google Scholar 

  14. Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT, Clarkson B, Kuriyan J (2002) Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 62:4236–4243

    CAS  PubMed  Google Scholar 

  15. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  CAS  PubMed  Google Scholar 

  16. Chessari G, Woodhead AJ (2009) From fragment to clinical candidate – a historical perspective. Drug Discov Today 14:668–675

    Article  CAS  PubMed  Google Scholar 

  17. Zartler ER, Shapiro MJ (2005) Fragonomics: fragment-based drug discovery. Curr Opin Chem Biol 9:366–370

    Article  CAS  PubMed  Google Scholar 

  18. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  19. Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877

    Article  PubMed  Google Scholar 

  20. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431

    Article  PubMed  Google Scholar 

  21. Vieth M, Siegel MG, Higgs RE, Watson IA, Robertson DH, Savin KA, Durst GL, Hipskind PA (2004) Characteristic physical properties and structural fragments of marketed oral drugs. J Med Chem 47:224–232

    Article  CAS  PubMed  Google Scholar 

  22. Saxty G, Woodhead SJ, Berdini V, Davies TG, Verdonk ML, Wyatt PG, Boyle RG, Barford D, Downham R, Garrett MD, Carr RA (2007) Identification of inhibitors of protein kinase B using fragment-based lead discovery. J Med Chem 50:2293–2296

    Article  CAS  PubMed  Google Scholar 

  23. Verdonk ML, Rees DC (2008) Group efficiency: a guideline for hits-to-leads chemistry. ChemMedChem 3:1179–1180

    Article  CAS  PubMed  Google Scholar 

  24. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881–890

    Article  CAS  PubMed  Google Scholar 

  25. Murray CW, Blundell TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20:497–507

    Article  CAS  PubMed  Google Scholar 

  26. Gradler U, Bomke J, Musil D, Dresing V, Lehmann M, Holzemann G, Greiner H, Esdar C, Krier M, Heinrich T (2013) Fragment-based discovery of focal adhesion kinase inhibitors. Bioorg Med Chem Lett 23:5401–5409

    Article  CAS  PubMed  Google Scholar 

  27. Lepre CA (2011) Practical aspects of NMR-based fragment screening. Methods Enzymol 493:219–239

    Article  CAS  PubMed  Google Scholar 

  28. Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104:3641–3675

    Article  CAS  PubMed  Google Scholar 

  29. Neumann T, Junker HD, Schmidt K, Sekul R (2007) SPR-based fragment screening: advantages and applications. Curr Top Med Chem 7:1630–1642

    Article  CAS  PubMed  Google Scholar 

  30. Ladbury JE, Klebe G, Freire E (2010) Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 9:23–27

    Article  CAS  PubMed  Google Scholar 

  31. Allen KN, Bellamacina CR, Ding X, Jeffery CJ, Mattos C, Petsko GA, Ringe D (1996) An experimental approach to mapping the binding surfaces of crystalline proteins. J Phys Chem 100:2605–2611

    Article  CAS  Google Scholar 

  32. Jhoti H, Cleasby A, Verdonk M, Williams G (2007) Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr Opin Chem Biol 11:485–493

    Article  CAS  PubMed  Google Scholar 

  33. Davies TG, Tickle IJ (2012) Fragment screening using X-ray crystallography. Top Curr Chem 317:33–59

    Article  CAS  PubMed  Google Scholar 

  34. Spurlino JC (2011) Fragment screening purely with protein crystallography. Methods Enzymol 493:321–356

    Article  CAS  PubMed  Google Scholar 

  35. Leach AR, Hann MM, Burrows JN, Griffen EJ (2006) Fragment screening: an introduction. Mol BioSyst 2:429–446

    Article  CAS  Google Scholar 

  36. Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) Fragment-based lead discovery using X-ray crystallography. J Med Chem 48:403–413

    Article  CAS  PubMed  Google Scholar 

  37. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39:2887–2893

    Article  CAS  PubMed  Google Scholar 

  38. Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay Murcko MA, Moore JM (1999) The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem Biol 6:755–769

    Article  CAS  PubMed  Google Scholar 

  39. Baurin N, Aboul-Ela F, Barril X, Davis B, Drysdale M, Dymock B, Finch H, Fromont C, Richardson C, Simmonite H, Hubbard RE (2004) Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets. J Chem Inf Comput Sci 44:2157–2166

    Article  CAS  PubMed  Google Scholar 

  40. Aronov AM, McClain B, Stuver MC, Murcko MA (2008) Kinase-likeness and kinase-privileged fragments: toward virtual polypharmacology. J Med Chem 51:1214–1222

    Article  CAS  PubMed  Google Scholar 

  41. Muegge I, Enyedy IJ (2004) Virtual screening for kinase targets. Curr Med Chem 11:693–707

    Article  CAS  PubMed  Google Scholar 

  42. Vieth M, Erickson J, Wang J, Webster Y, Mader M, Higgs R, Watson I (2009) Kinase inhibitor data modeling and de novo inhibitor design with fragment approaches. J Med Chem 52:6456–6466

    Article  CAS  PubMed  Google Scholar 

  43. Xia X, Maliski EG, Gallant P, Rogers D (2004) Classification of kinase inhibitors using a Bayesian model. J Med Chem 47:4463–4470

    Article  CAS  PubMed  Google Scholar 

  44. Sutherland JJ, Higgs RE, Watson I, Vieth M (2008) Chemical fragments as foundations for understanding target space and activity prediction. J Med Chem 51:2689–2700

    Article  CAS  PubMed  Google Scholar 

  45. Verdonk ML, Giangreco I, Hall RJ, Korb O, Mortenson PN, Murray CW (2011) Docking performance of fragments and druglike compounds. J Med Chem 54:5422–5431

    Article  CAS  PubMed  Google Scholar 

  46. Good AC, Liu J, Hirth B, Asmussen G, Xiang Y, Biemann H-P, Bishop KA, Fremgen T, Fitzgerald M, Gladysheva T, Jain A, Jancsics K, Metz M, Papoulis A, Skerlj R, Stepp JD, Wei RR (2012) Implications of promiscuous Pim-1 kinase fragment inhibitor hydrophobic interactions for fragment-based drug design. J Med Chem 55:2641–2648

    Article  CAS  PubMed  Google Scholar 

  47. Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins Struct Funct Genet 11:29–34

    Article  CAS  PubMed  Google Scholar 

  48. Clark M, Guarnieri F, Shkurko I, Wiseman J (2006) Grand canonical Monte Carlo simulation of ligand-protein binding. J Chem Inf Model 46:231–242

    Article  CAS  PubMed  Google Scholar 

  49. Clark M, Meshkat S, Talbot GT, Carnevali P, Wiseman JS (2009) Fragment-based computation of binding free energies by systematic sampling. J Chem Inf Model 49:1901–1913

    Article  CAS  PubMed  Google Scholar 

  50. Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78

    Article  CAS  PubMed  Google Scholar 

  51. Bohm HJ (1992) LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des 6:593–606

    Article  CAS  PubMed  Google Scholar 

  52. Eisen MB, Wiley DC, Karplus M, Hubbard RE (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins Struct Funct Genet 19:199–221

    Article  CAS  PubMed  Google Scholar 

  53. Lauri G, Bartlett PA (1994) CAVEAT: a program to facilitate the design of organic molecules. J Comput Aided Mol Des 8:51–66

    Article  CAS  PubMed  Google Scholar 

  54. Yang Y, Nesterenko DV, Trump RP, Yamaguchi K, Bartlett PA, Drueckhammer DG (2005) Virtual hydrocarbon and combinatorial databases for use with CAVEAT. J Chem Inf Model 45:1820–1823

    Article  CAS  PubMed  Google Scholar 

  55. Maass P, Schulz-Gasch T, Stahl M, Rarey M (2007) Recore: a fast and versatile method for scaffold hopping based on small molecule crystal structure conformations. J Chem Inf Model 47:390–399

    Article  CAS  PubMed  Google Scholar 

  56. Bohacek RS, McMartin C (1994) Multiple highly diverse structures complementary to enzyme binding sites: results of extensive application of a de novo design method incorporating combinatorial growth. J Am Chem Soc 116:5560–5571

    Article  CAS  Google Scholar 

  57. Todorov NP, Dean PM (1998) A branch-and-bound method for optimal atom-type assignment in de novo ligand design. J Comput Aided Mol Des 12:335–349

    Article  CAS  PubMed  Google Scholar 

  58. Todorov NP, Dean PM (1997) Evaluation of a method for controlling molecular scaffold diversity in de novo ligand design. J Comput Aided Mol Des 11:175–192

    Article  CAS  PubMed  Google Scholar 

  59. Lewell XQ, Judd D, Watson S, Hann M (1998) RECAP-retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci 38:511–522

    Article  CAS  PubMed  Google Scholar 

  60. Alberts IL, Todorov NP, Dean PM (2005) Receptor flexibility in de novo ligand design and docking. J Med Chem 48:6585–6596

    Article  CAS  PubMed  Google Scholar 

  61. Dean PM, Firth-Clark S, Harris W, Kirton SB, Todorov NP (2006) SkelGen: a general tool for structure-based de novo ligand design. Expert Opin Drug Discov 1:179–189

    Article  CAS  PubMed  Google Scholar 

  62. Stahl M, Todorov NP, James T, Mauser H, Boehm H-J, Dean PM (2002) A validation study on the practical use of automated de novo design. J Comput Aided Mol Des 16:459–478

    Article  CAS  PubMed  Google Scholar 

  63. Pierce AC, Rao G, Bemis GW (2004) BREED: generating novel inhibitors through hybridization of known ligands. Application to CDK2, P38, and HIV protease. J Med Chem 47:2768–2775

    Article  CAS  PubMed  Google Scholar 

  64. Schrödinger Release 2014-4: Maestro, version 10.0, (2014) Schrödinger, LLC, New York, NY

    Google Scholar 

  65. Molecular Operating Environment (MOE), 2013.08; (2015) Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7

    Google Scholar 

  66. Sutherland JJ, Nandigam RK, Erickson JA, Vieth M (2007) Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy. J Chem Inf Model 47:2293–2302

    Article  CAS  PubMed  Google Scholar 

  67. Nandigam RK, Evans DA, Erickson JA, Kim S, Sutherland JJ (2008) Predicting the accuracy of ligand overlay methods with random forest models. J Chem Inf Model 48:2386–2394

    Article  CAS  PubMed  Google Scholar 

  68. Erickson JA, Mader MM, Watson IA, Webster YW, Higgs RE, Bell MA, Vieth M (2010) Structure-guided expansion of kinase fragment libraries driven by support vector machine models. Biochim Biophys Acta 1804:642–652

    Article  CAS  PubMed  Google Scholar 

  69. Erlanson DA, McDowell RS, O’Brien T (2004) Fragment-based drug discovery. J Med Chem 47:3463–3482

    Article  CAS  PubMed  Google Scholar 

  70. deKloe GE, Bailey D, Leurs R, deEsch IJP (2009) Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today 14:630–646

    Article  Google Scholar 

  71. Wyatt PG, Woodhead AJ, Berdini V, Boulstridge JA, Carr MG, Cross DM, Davis DJ, Devine LA, Early TR, Feltell RE, Lewis EJ, McMenamin RL, Navarro EF, O’Brien MA, O’Reilly M, Reule M, Saxty G, Seavers LCA, Smith D-M, Squires MS, Trewartha G, Walker MT, Woolford AJA (2008) Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J Med Chem 51:4986–4999

    Article  CAS  PubMed  Google Scholar 

  72. Howard S, Berdini V, Boulstridge JA, Carr MG, Cross DM, Curry J, Devine LA, Early TR, Fazal L, Gill AL, Heathcote M, Maman S, Matthews JE, McMenamin RL, Navarro EF, O’Brien MA, O’Reilly M, Rees DC, Reule M, Tisi D, Williams G, Vinkovic M, Wyatt PG (2009) Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem 52:379–388

    Article  CAS  PubMed  Google Scholar 

  73. Antonysamy S, Hirst G, Park F, Sprengeler P, Stappenbeck F, Steensma R, Wilson M, Wong M (2009) Fragment-based discovery of JAK-2 inhibitors. Bioorg Med Chem Lett 19:279–282

    Article  CAS  PubMed  Google Scholar 

  74. Xiang Y, Hirth B, Asmussen G, Biemann H-P, Bishop KA, Good A, Fitzgerald M, Gladysheva T, Jain A, Jancsics K, Liu J, Metz M, Papoulis A, Skerlj R, Stepp JD, Wei RR (2011) The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors. Bioorg Med Chem Lett 21:3050–3056

    Article  CAS  PubMed  Google Scholar 

  75. Chu MLH, Lang Z, Chavas LMG, Neres J, Fedorova OS, Tabernero L, Cherry M, Williams DH, Douglas KT, Eyers PA (2010) Biophysical and X-ray crystallographic analysis of Mps1 kinase inhibitor complexes. Biochemistry 49:1689–1701

    Article  CAS  PubMed  Google Scholar 

  76. Matthews TP, Klair S, Burns S, Boxall K, Cherry M, Fisher M, Westwood IM, Walton MI, McHardy T, Cheung K-MJ, Van MR, Williams D, Aherne GW, Garrett MD, Reader J, Collins I (2009) Identification of inhibitors of checkpoint kinase 1 through template screening. J Med Chem 52:4810–4819

    Article  CAS  PubMed  Google Scholar 

  77. Reader JC, Matthews TP, Klair S, Cheung K-MJ, Scanlon J, Proisy N, Addison G, Ellard J, Piton N, Taylor S, Cherry M, Fisher M, Boxall K, Burns S, Walton MI, Westwood IM, Hayes A, Eve P, Valenti M, Brandon AH, Box G, Montfort RLM, Williams DH, Aherne GW, Raynaud FI, Eccles SA, Garrett MD, Collins I (2011) Structure-guided evolution of potent and selective CHK1 inhibitors through scaffold morphing. J Med Chem 54:8328–8342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Lainchbury M, Matthews TP, McHardy T, Boxall KJ, Walton MI, Eve PD, Hayes A, Valenti MR, de HBAK, Box G, Aherne GW, Reader JC, Raynaud FI, Eccless SA, Garrett MD, Collins I (2012) Discovery of 3-alkoxyamino-5-(pyridin-2-ylamino)pyrazine-2-carbonitriles as selective, orally bioavailable CHK1 inhibitors. J Med Chem 55:10229–10240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Li R, Martin MP, Liu Y, Wang B, Patel RA, Zhu J-Y, Sun N, Pireddu R, Lawrence NJ, Li J, Haura EB, Sung S-S, Guida WC, Schonbrunn E, Sebti SM (2012) Fragment-based and structure-guided discovery and optimization of rho kinase inhibitors. J Med Chem 55:2474–2478

    Article  CAS  PubMed  Google Scholar 

  80. Irie T, Fujii I, Sawa M (2012) Design and combinatorial synthesis of a novel kinase-focused library using click chemistry-based fragment assembly. Bioorg Med Chem Lett 22:591–596

    Article  CAS  PubMed  Google Scholar 

  81. Gentile G, Bernasconi G, Pozzan A, Merlo G, Marzorati P, Bamborough P, Bax B, Bridges A, Brough C, Carter P, Cutler G, Neu M, Takada M (2011) Identification of 2-(4-pyridyl)thienopyridinones as GSK-3β inhibitors. Bioorg Med Chem Lett 21:4823–4827

    Article  CAS  PubMed  Google Scholar 

  82. Erlanson DA, Arndt JW, Cancilla MT, Cao K, Elling RA, English N, Friedman J, Hansen SK, Hession C, Joseph I, Kumaravel G, Lee W-C, Lind KE, McDowell RS, Miatkowski K, Nguyen C, Nguyen TB, Park S, Pathan N, Penny DM, Romanowski MJ, Scott D, Silvian L, Simmons RL, Tangonan BT, Yang W, Sun L (2011) Discovery of a potent and highly selective PDK1 inhibitor via fragment-based drug discovery. Bioorg Med Chem Lett 21:3078–3083

    Article  CAS  PubMed  Google Scholar 

  83. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KSM, Fong D, Zhu Y-L, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim S-H, Schlessinger J, Zhang KYJ, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A 105:3041–3046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Flaherty KT, Yasothan U, Kirkpatrick P (2011) Vemurafenib. Nat Rev Drug Discov 10:811–812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author is indebted to Drs. M. Vieth, J. Sutherland, J. Toth, D. Robertson, and C. Humblet for valuable suggestions and support of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon A. Erickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Erickson, J.A. (2015). Fragment-Based Design of Kinase Inhibitors: A Practical Guide. In: Klon, A. (eds) Fragment-Based Methods in Drug Discovery. Methods in Molecular Biology, vol 1289. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2486-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2486-8_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2485-1

  • Online ISBN: 978-1-4939-2486-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics